Fresh water diatoms from Kua Tal, district Nainital, Kumaon Himalaya, Uttar Pradesh

Asha Khandelwal & H. P. Gupta

Khandelwal, Asha & Gupta, H. P. 1989. Fresh water diatoms from Kua Tal, district Nainital, Kumaon Himalaya, Uttar Pradesh. *Palaeobotanist* 37(2): 180-184.

The present communication embodies the results of diatom analysis from lacustrine sediments of Kua Tal, district Naini Tal, Uttar Pradesh. The study reveals the predominance of Pennales which are represented by about one and a half dozen taxa. However, Centrales are infrequent and represented by two taxa only.

Key-words-Palynology, Diatoms, Pennales, Centrales, Kumaon Himalaya (India).

Asha Khandelwal & H. P. Gupta, Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India.

साराँश

कुमायूँ हिमालय (उत्तर प्रदेश) में नैनीताल जनपद में स्थित कुआ ताल से अलवणी डाऍटम

आशा खण्डेलवाल एवं हरीपाल गुप्ता

नैनीताल जनपद (उत्तर प्रदेश) में कुआ ताल के सरोवरी अवसादों से उपलब्ध डाऍटम विश्लेषण के आँकड़े इस शोध-पत्र में प्रस्तुत किये गये हैं। इस अध्ययन से पिन्नेत्स की पूर्वबहुत्यता व्यक्त होती है जिनके कि इस समुच्चय में लगभग डेढ़ दर्जन वर्गक विद्यमान हैं। सॅन्ट्रेत्स अपेक्षाकृत लगातार नहीं मिलते तथा इनके केवल दो वर्गक विद्यमान हैं।

KUA TAL, remnant of an ancient lake, is situated about half a kilometer west of Bhim Tal on way to Naini Tal at an altitude of about 4,500' between 79°40' N longitude and 29°28'E latitude. Most of the peripheral area of Kua Tal has been dried up and brought under paddy cultivation leaving aside a shallow depresssion enabling to bore through about 0.75 m deep. As revealed by radiometric dates for other lake sediments in the basin, it is presumed that sediments of Kua Tal in question are not older than 400-500 yrs B.P.

In the Bhim Tal-Naukuchia Tal Basin it is a closed lake and has no outlet. According to Mathur (1955), the lakes in the basin originated due to differential earth movements. Wadia (1957) opined that lakes in Kumaon Himalaya are the result of landslides whereas, Raina (1965) advocated that they are of glacial origin.

Pollen analytical investigations have been carried out earlier in Naukuchia Tal (Vishnu-Mittre, Gupta & Robert, 1967), Naukuchia Tal and Bhim Tal

(Gupta, 1973, 1977), Sat Tal (Gupta & Khandelwal, 1982) to reconstruct the palaeovegetation and palaeoenvironment. In addition to this, the occurrence of *Sphagnum papillosum* has also been recorded (Vishnu-Mittre & Gupta, 1971). Hitherto, no work on diatoms has been done. Obviously, this report is perhaps the first one to deal with the results of diatom analysis.

MATERIAL AND METHOD

Material from Kua Tal was procured by using Hiller's peat-auger with 50 cm long chamber. Samples from 0.75 m deep profile were collected in chronological sequence at an interval of 10 cm each. Only four samples, viz., 1, 3, 5 and 7 were subjected for diatom analysis.

The diatoms were extracted by boiling the matrix in concentrated H₂So₄. The treated sample was washed with distilled water several times and permanent slides were made in Styrax. In order to

work out the diatom assemblage in each sample their relative abundance was calculated (Andrews, 1966). Each taxon is, thus, rated as follows:

Dominant—Numerous specimens in all fields of view.

Abundant—At least one specimen in all fields of view.

Common—At least one specimen in many fields of view.

Frequent—Several specimens on entire slide. Rare—One or two specimens on entire slide.

SYSTEMATIC DESCRIPTION

All the four samples have yielded diatoms without much variation in number and diversity and hence their relative abundance has been considered collectively (Table 1).

Table 1-Showing relative distribution of diatom from Kua Tal, district Nainital

Diatom taxa	Do- min- ant	Ab- und- ant	Co- mm on	Fr. equ. ent	Ra- re
Caloneis silicula	_	-	_	-	+
Cocconeis placentula	-	+		-	-
Cyclotella meneghiniana	-	-	-	-	+
Cymbella aspera	+	-	-		-
Epithemia zebra	-	-	-	-	+
Eunotia pectinalis vat. neglecta	-	-	_	+	-
Gomphonema acuminatum	-	-	+	-	_
G. constrictum var. capitatum	-	-	_	+	_
G. montanum vat acuminatum	_	_	_	+	_
Gyrosigma acuminatum	-		+	_	-
Hantzschia amphioxys	-	-	_	+	-
Melosira sp.	_	-	-	+	_
Navicula cuspidata vat. ambigua	_	+		_	-
N. graciloides	_	-		+	_
N. rhyncocephala var					
amphiceros	-	-		+	_
Neidium oblique-striatum var. parallela	_	+		-	_
Pinnularia sp.	-	+	-	-	-
Surirella ovata	-	-	+	-	-
Synedra ulna	+	-	_	-	-

Caloneis silicula (Ehr.) Cl. Pl. 1, fig. 16

Valve 70-74 μ m long, 13-15 μ m broad, linear; margins slightly triundulate, distinctly tumid in the middle; ends broadly cuneate and slightly constricted, produced and rounded; raphe thin and straight; striae 9-10 in 10 μ m, fine, slightly radial.

> Cocconeis placentula Ehr. Pl. 1, figs 9, 10

Valve 23-30 μm long, 15-20 μm broad, elliptical. Valve with raphe: raphe thin and straight, axial area lanceolate, club-shaped with broad bluntly rounded

very narrow; central area small roundish; striae 24-27 in 10 μ m, finely punctate; marginal rim distinct. Valve with pseudo raphe: pseudoraphe narrow, linear; striae 23-25 in 10 μ m, interrupted by several closely placed longitudinal, somewhat wavy hyaline bands.

Cyclotella meneghiniana Kütz.

Valve discoidal 11-19 in μm diameter; margin striated, striae wedge-shaped, 9-11 in 10 µm.

> Cymbella aspera (Ehr.) Cl. Pl. 1, figs 5, 6

Valve 35-60 μ m long, 9-17 μ m broad, asymmetrical; dorsal side strongly convex and ventral side slightly convex; ends constricted and produced rounded; raphe thick, eccentric; axial area very narrow; central area slightly widened; striae 10-12 in 10 μ m, radial, distinctly punctate and somewhat closer at the ends.

Epithemia zebra (Ehr.) Kütz.

Valve 30-33 μ m long, 10-12 μ m broad, attenuate; slightly recurved at the ends; dorsal line arcuate; striae distinctly punctate, 9-10 in 10 μ m.

Eunotia pectinalis (Kütz.) Rabh. var. neglecta Gandhi Pl. 1, fig. 15

Valve 50-55 μ m long, 9-10 μ m broad, slightly curved with rounded ends; striae distinct, 11-12 in 10 µm.

> Gomphonema acuminatum Ehr. Pl. 1, fig. 7

Valve 50-67 μm long, 9-10 μm broad, wedgeshaped with broad head pole and strongly narrowed foot pole; striae punctate and radial transapically, 10-13 in 10 μm.

Gomphonema constrictum Ehr. var. capitatum (Ehr.) Grun. in van Heurck Pl. 1, fig. 13

Valve 40-44 μ m long, 10-13 μ m broad; clubshaped with flat rounded head pole and more strongly narrowed foot pole, no transapical constriction; raphe thick and straight; striae fine, distinctly punctate and radial transapically, 11-12 in $10 \mu m$.

Gomphonema montanum Schum. var. acuminata (Perag. M. & Hérib. in Hérib.) Mayer Pl. 1, fig. 19

Valve 48-50 μ m long, 16-18 μ m broad;

head pole and somewhat narrowed foot pole; striae distinctly punctate, 7-9 in 10 μ m.

Gyrosigma acuminatum (Kütz.) Rabh Pl. 1, fig. 2

Valve 90-100 μ m long, 10-13 μ m broad; S-shaped, lanceolate, gradually narrowed from the middle towards bluntly rounded apices; raphe correspondingly shaped; transverse and longitudinal striae faint.

Hantzschia amphioxys (Ehr.) Grun. in Cl. & Grun. Pl. 1, fig. 11

Valve 30-34 μ m long, 7-9 μ m broad; slightly arcuate, linear; dorsal side slightly convex, ventral side slightly concave with slight depression in the middle; ends constricted, bluntly rostrate to weakly capitate; keel eccentric, keel punctae coarse, two of the middle punctae widely set, 6-7 in 10 μ m, striae distinct, 14-18 in 10 μ m

Melosira sp.

Valve 25 μ m long, 11 μ m broad, cylindrical, generally found in girdle view.

Navicula cuspidata (Kütz.) Kütz. var. ambigua (Ehr.) Cl. Pl. 1, fig. 17

Valve 85.98 μ m long, 21-24 μ m broad; elliptic-lanceolate with rostrate ends; raphe thin and straight; striae transverse, almost perpendicular to the middle line, 18-20 in 10 μ m.

Navicula graciloides Mayer Pl. 1, fig. 8

Valve 35.40 μ m long, 8-10 μ m broad, lanceolate; raphe thin and straight; striae 12-14 in 10 μ m.

Navicula rhyncocephala Kütz. var. amphiceros (Kütz.) Grún. in Van Heurck Pl. 1, fig. 12

Valve 45-55 μ m long, 11-13 μ m broad; broadly lanceolate with constricted, produced feebly capitate ends; raphe thin and straight; striae radial in the middle and convergent at the ends, 12-14 in 10 μ m

Neidium oblique-striatum (A.S.) Cleve var. parallela Gonzalves & Gandhi Pl. 1, fig. 14

Valve 55-75 μ m long, 10-14 μ m broad; linearelliptical with constricted broadly produced subcuneate ends; raphe thin and straight, striae fine, 1-3 hyaline, longitudinal furrows near the margins, striae 22-26 in 10 μ m.

Pinnularia gibba Ehr. Pl 1. figs 3. 4

Valve 60.75 μ m long, 11-14 μ m broad; linear, lanceolate with slight but uniformly convex sides and slightly swollen rounded ends; raphe thin and straight with central pore unilaterally bent and curved terminal fissures, axial area narrowly lanceolate, central area large rhomboidal reaching to the sides; striae radial in the middle and convergent at the ends, 11-12 in 10 μ m

Surirella orata Kütz. Pl. 1, fig. 18

Valve 56-95 μ m long, 18-30 μ m broad, heteropolar, long, ovate with broadly rounded apex and grdually narrowed, well-marked cuneate base; costae 3-5 in 10 μ m; striae indistinct.

Valve 90-200 μ m long, 5.7 μ m broad, fragmental, slender, strongly constricted and produced rounded ends; striae strong and uniformly placed, 9-10 in 10 μ m.

DISCUSSION AND CONCLUSION

The diatom analysis of lacustrine sediments from Kua Tal profile in Naini Tal District, Kumaon Himalaya, has revealed the overall dominance of Pennales both quantity-wise and quality-wise However, Centrales are insignificantly found and represented only by two taxa, viz., *Cyclotella* and *Melosira*. Nineteen types of diatoms have been studied. On the basis of their relative abundance in

PLATE 1

- 1 Synedra ulna. × 1000
- 2. Gyrosigma acuminatum × 850.
- 3, 4. Pinnularia gibba. × 850.
- 5, 6. Cymbella aspera × 1000.
 - 7 Gomphonema acuminatum × 1000.
 - 8 Navicula graciloides. × 1000.
- 9, 10. Cocconeis placentula. × 850.
- 11 Hantzschia amphioxys × 850.

- 12. Navicula rhyncocephala var amphiceros × 1000.
- 13 Gomphonema constrictum var. capitala. × 1000
- 14. Neidium oblique-striation var parallela. × 1000.
- 15. Eurotia pectinata var. neglecta × 850.
- 16 Caloneis silicula. × 850.
- 17 Navicula cuspidata var. ambigua. × 850.
- 18 Surirella ovata × 1000.
- 19. Gomphonema montanum var. acuminatum × 1500.

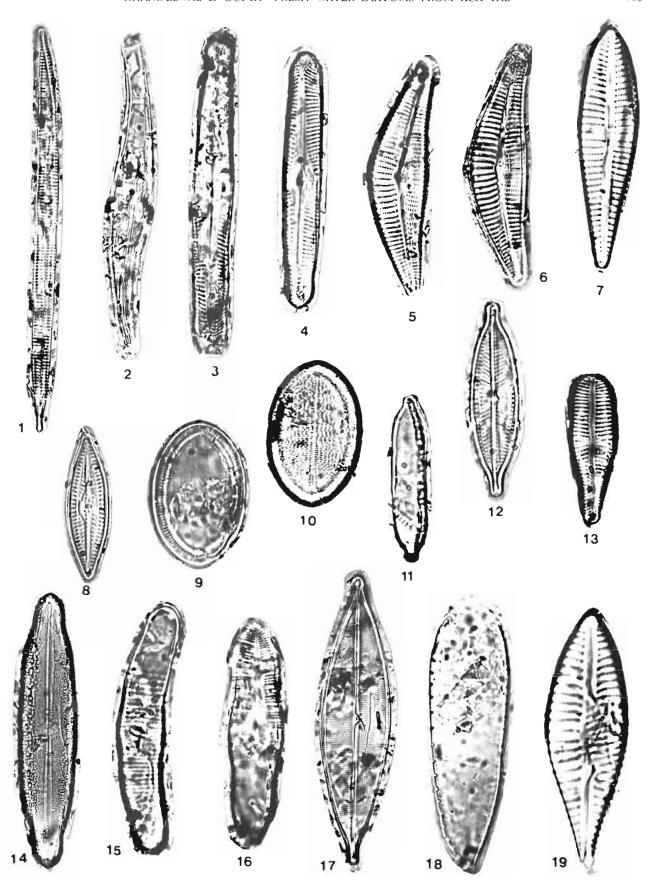


PLATE 1

the assemblage, five quantitative categories have been made to include in diatom taxa. Dominant taxa are Cymbella aspera and Synedra ulna; abundant taxa are Cocconeis placentula, Navicula cuspidata var. ambigua, Neidium oblique-striatum var. parallela and Pinnularia sp.; common taxa are Gomphonema acuminatum, Gyrosigma acuminatum and Surirella ovata, Eunotia pectinalis var neglecta, Gomphonema constrictum var capitatum, Gomphonema montanum var. acuminatum, Hantzschia amphioxys, Melosira sp., Navicula graciloides and Navicula rhyncocephala var amphiceros are frequent. The rare forms are Caloneis silicula, Cyclotella meneghiniana and Epithemia zebra.

The preservation of diatoms, irrespective of their type, is perfect and this may be accounted as due to the continual ponding environment during the course of their development. The diatom assemblage in the sediments is also suggestive of fresh water depositional environment.

REFERENCES

- Andrews, G. W. 1966. Late Pleistocene diatoms from the Trempealeau Valley, Wisconsin. Geol. Surv. Prof. Papers 523A, 1 27
- Gupta, H. P. 1973. Macroscopic plant remains from the Postglacial deposits of Kumaon Hills. Geophytology 3(1): 5-12.
- Gupta, H. P. 1977 Pollen analytical reconnaissance of Post-glacial deposits from subtropical zone in Nainital District, Kumaon Himalaya Palaeobotanist 24(3): 215-244.
- Gupta, H. P. & Khandelwal, Asha 1982. Late Holocene palynology from the lake in Sat Tal Valley, district Nainital, Kumaon Himalaya, U.P. *Geophytology* **12**(2): 313-321.
- Mathur, S. M. 1955. On the origin of Bhim Tal and neighbouring lakes in the Nainital District, U.P. Q. J. geol. Min. metall. Soc. India 27 (4)
- Raina, B. N. 1965. A note on the origin of some Himalayan lakes, pp. 101-113 in: W. G. West (Ed.)—Sem on Geomorphological studies in India, Saugar.
- Vishnu-Mittre, Gupta, H. P. & Robert, R. D. 1967 Studies of the Late Quaternary vegetational history of Kumaon Himalaya. Curr Sci 36(20): 539 540.
- Vishnu-Mittre & Gupta, H. P. 1971 Sphagnum papillosum Lindl.—
 A new record from western India Sci. Cult. 37(1): 44-45.
 Wadia, D. N. 1957 Geology of India, 3rd edn., London.