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ABSTRACT

Bajpai U 2008. New dimensions in palaeobotanical research: ultrastructural studies on plant fossils. The Palaeobotanist
57(1-2) : 221-226.

In recent years palaeobiology has developed from a primarily descriptive science into a technically advanced and
intellectually attractive field, with ramifications applicable to phylogeny, evolution, taphonomy and palaeoclimate. A
combination of light microscopy (LM) with scanning electron microscopy (SEM) and transmission electron microscopy
(TEM) is often used in the study of fossilised organs and organelles. Details of the surface microtopography, which can be
seen only through SEM provide evidence of taphonomic processes and influences. Ultrastructural investigation of
palynofossils can help resolve a number of problems concerning the interpretation of morphology, development and
biology of fossil spores and pollen, and provide new significant data about their systematics. Studies of fine structure of
fossil plant cuticles can be help determine the degree of cuticle preservation and organisation of structural components,
and interpret the physical environment in which the plants lived and thrived. Ultrastructural studies of fossil plant cuticle
may also reveal the presence of delicate structures such as infection pegs formed as a result of fungal infection or changes
in the ultrastructure of the cuticle proper due to fungal infection. SEM study of Late Cretaceous fusainised angiosperm
flowers has enabled their identification in terms of modern orders and families, thus greatly improving our knowledge of
angiosperm evolution and radiation. SEM study of fossil charcoals (fusain) is also useful in understanding the past role of
wildfire and ancient fire-prone plant communities.

Key-words—Plant fossils, Plant cuticles, Palynofossils, Fusainised fossils, Ultrastructure.
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lkjka'k

gky gh ds o"kksZZa esa iqjkthofoKku izkFkfed #i ls fooj.kkRed foKku ls ,d rduhdh #i ls mPp o izfrHkklaiUu vkd"kZd {ks= esa tkfro`Rr] fodkl]
tSolkfndh ,oa iqjktyok;q cgq'kk[ku lfgr fodflr gqbZ gSA thokf'er vax ,oa dksf'kdkax ds v/;;u esa izk;% Øeoh{k.k bysDVªkWu lw{enf'kZdh ¼,l bZ ,e½
lfgr izdk'k lw{enf'kZdh rFkk lapj.k bysDVªkWu lw{enf'kZdh  ¼Vh bZ ,e½ dk la;kstu iz;ksx fd;k tkrk gSA i`"Bh; lw{eLFkykd`fr ds fooj.k] tks fd dsoy ,l
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ijklajpuk esa ifjorZu Hkh O;Dr dj ldrs gSaA vafre fØVs'kl ¶;wtsuhd`r vko`rchth iq"iksa ds ,l-bZ-,e- v/;;u ls muds vk/kqfud x.kksa ,oa dqyksa ds laca/k
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INTRODUCTION

I N continuing quest to explore structure of an organism or
 its various organs and organelles at a very high resolution

and to relate the structural organisation to functional
significance, a variety of new tools is now available. The
electron microscopes, which give a real-time magnification
several hundred times of the light microscope, are now a
relatively routine research tool in most areas of palaeobotany
(Hill, 1990; Collinson, 1999). Digitally captured EM images can
now be stored on a zip disk, on a compact disc or a pen-drive,
printed on conventional laserjet printer or dye-sublimation
printer (for photographic quality prints), and also shared with
fellow researchers through the web.

The fossil record embodies a wealth of data on the origin
and progressive evolution of the biosphere. Investigation of
biological fossils is now a technically advanced and
intellectually attractive field, with ramifications applicable to
phylogeny, evolution, taphonomy and palaeoclimate. The
electron microscopes have proved to be very potent tools for
ultrastructural and micro-morphological studies undertaken
to generate data towards this end. Often details which can be
seen only through EM provide evidence of taphonomic
processes (Collinson, 1999). For example, eroded micro-
topography of a fossil or scratches on its surface may indicate
transport in an abrasive context, or lack of lamellae in the exine
of fossil gymnosperm pollen may indicate homogenisation
during fossilization (Pl. 1). Electron probe microanalysis
(EPMA) done on the SEM is a non-destructive technique used
to map the distribution of elements present in a fossil.
Analytical Transmission Electron Microscopy  works on a
similar principle and has the ability to derive chemical and
crystallographic data from extremely small samples (Morgan,
1985). Specimens which may not be coated  (e.g. type
specimens) can be imaged using low vacuum SEM, though
the resolution of this device is currently limited to x 500-1000
magnifications (Taylor, 1986).

Electron microscopy of Proterozoic fossils

Small fossilised cyanobacteria (single-celled - sometimes
organised in colonies- prokaryotes, which lack internal
organelles, a discrete nucleus and the histone proteins) have

been extracted from Precambrian rocks, and studied with SEM
and TEM. One may study the role of bacteria, with the help of
electron microscopes, in conversion of structured mass to
unstructured one and their capabilities to act with various
minerals in the sediment (Bajpai et al., 2001).

TEM and SEM analyses of acritarchs in Mesoproterozoic
shales show promise for elucidating eukaryotic cell wall
ultrastructure in ancient samples if the results could be verified
from comparisons with modern analogues (Javaux et al., 2003,
2004). There, however, are technical challenges in imaging
modern microbes by conventional electron microscopy.
Environmental scanning electron microscope (ESEM) allows
high resolution imaging of uncoated delicate and hydrated
samples. Using ESEM fresh microbial cultures can be imaged
directly and then surface morphology can be compared with
that of the fossil microbes in chert or shale. Using this tool,
role of taphonomical factors in alterations in an organism, or
an organ, or a layer, can be assessed at ultrastructural level
with a very high degree of confidence. For example, some
acritarchs possess a similar reticulate texture, which has been
recognised as a taxonomic feature. Micro-morphological
studies on the other hand suggest that this texture could be a
result of digenetic processes, such as, compaction or
desiccation, and hence may not be a taxonomic feature.

Investigation of 1500-1400 Ma fossils from Australia
and broadly coeval rocks from China, with light and electron
microscopes, has shown that these assemblages do include a
diversity of eukaryotic remains (Javaux et al., 2004).
Ultrastructural studies on some Early Cambrian acritarchs have
provided evidence of diverse wall ultrastructure within a single
genus (e.g. in Leiosphaeridia and Tasmanites) and revealed
the presence of at least four structural types of vesicle wall
(Talyzina & Moczydlowska, 2000). From the available evidence
it could be deduced that some of the Cambrian leiosphaerids
were chlorophycean algae, probably belonging to the Order
Chlorococcales.

Ultrastructural studies of palynofossils

Geologists use palynological studies mainly to correlate
strata and determine the relative age of a given bed, horizon,
formation or stratigraphical sequence, or to reconstruct marine
and freshwater communities to determine past climates, or to

PLATE 1

1. The megaspore Biharisporites ghoshii showing trilete mark
and spines with strong bases. x 1,160 (from Bajpai, 2003).

2. Outer zone of the cuticle in Dicrodium gouldii Retallack to
show the nature and number of the lamellae, and remnant of
wax deposit at the cuticle-air interface. x 28,000 (from
Maheshwari & Bajpai, 1996).

3. A colony of bacteria on cuticle of a Late Permian Glossopteris
leaf from Jharia Coalfield, India. x 8,000.

 
4. Infected cuticular membrane of Thinnfeldia indica Feistmantel

showing disturbed cellular layer. x 21,000 (from Maheshwari &
Bajpai, 1996a).

5. Cuticular membrane of Dicroidium gouldii showing fibrillar
nature of middle and inner zones. In the inner zone the fibrillae
acquire a “herring bone” pattern, a stress character. x 62,000
(from Maheshwari & Bajpai, 1996b).

6. Uninfected cuticular membrane of Thinfeldia indica showing
amorphous nature. x 22,000 (from Maheshwari & Bajpai,
1996b).
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examine the preservation of the particulate organic matter and
palynofossils to understand the depositional environment of
sediments. The investigation of ultrastructure of fossil spores
and pollen provides information, hitherto unavailable, about
the taxonomy, biology and evolution of past biota.
Ultrastructural studies (both SEM and TEM) of spore-
containing plant fragments from Late Ordovician rocks of
Oman have shown that these represent earliest bona fide land
plants of liverwort affinities.

A combination of LM with SEM and TEM is often most
informative in the study of palynofossils. Ultrastructural
investigation of fossil spores and pollen also reveals important
proxy records of structure useful for deciding functional
relationships by comparison with modern analogues.
Supplementary data from ultrastructural studies can help to
resolve a number of problems concerning the interpretation of
morphology of fossil spores and pollen (Batten et al., 1998),
evolution of structural features like sacci, and provide new
significant data about the botanical relationships of fossil
spores and pollen (Osborn & Taylor, 1993; Batten & Dutta,
1997). For example, ultrastructure of sporoderm in Trisaccites
pollen has been interpreted to indicate that the alveolate
sporoderm pattern may be an early structural type from which
other basic patterns of sporoderm evolved (Baldoni & Taylor,
1982). SEM study has shown that the spore walls have a
colloidal crystal organisation, and that self-assembly is a key
element in spore wall development (Hemsley et al., 1996). SEM
investigation has shown that in Potoniea, sporoderm initiation
begins as a series of lamellae with the increase in the exine and
differentiation between sexine and nexine the result of tapetal
sporopollenin and lamellar exfoliation (Taylor, 1982). The
presence of tapetal membranes in association with orbicules
as observed in the TEM study of Mesozoic pollen Classopollis
has demonstrated the developmental pattern of the final wall
ornament of the pollen wall (Taylor & Alvin, 1984).
Ultrastructural analyses of megaspore sporoderm have
revealed that the exine structure can sometimes be correlated
with dispersal strategy. For example, exine of megaspores of
the Late Carboniferous lycopod Mazocarpon is made up of
interconnected tubules, an ultrastructural organisation which
is believed to be associated with a unique reproductive strategy
wherein the dispersal unit is the entire megasporangium with
its attached sporangium (Taylor, 1990).

Ultrastructural investigations of plant cuticles

The cuticle, a continuous extra-cellular membrane, plays
the important protective role, and shows considerable
variations in its thickness, degree of development and chemical
composition between different species (Tegelaar et al., 1991).
Cuticle is highly resistant to chemical or physical degradation
and is often fossilised. Most of the features that appear in
extant plant cuticles also can be found in fossil cuticles (Taylor

et al., 1989). Cuticular analysis is an accepted method for
identification of fossil leaves. Six basic morphological types
of cuticle organisation in extant plants have been recognised
on the basis of presence or absence and extent of fibrillar and
lamellar components (Holloway, 1982). Studies of fine structure
of fossil cuticles can be directed at determining the degree of
cuticle preservation (Tegelaar et al., 1993), organisation of
structural components, and as a character in interpreting the
physical environment in which the organisms lived and
thrived. For example, the epidermis of xerophytic plants may
consist of very thick, cutinised outer walls, deeply sunken
stomata, and a dense layer of trichomes. The structure and
function of these xeromorphic features may be studied with
electron microscopes. It has been suggested, for example, that
the curved and wavy lamellae of the Al layer of the subsidiary
cell cuticle may be one of the xeromorphic features (Guignard
et al., 1998). Ultrastructural study of Zostera kiewiensis (see
grass) from the Early Oligocene of Ukraine has shown that it
was initially a land plant which had just begun to adapt to
aquatic environments (Vickulin et al., 1995). There, however,
have been relatively few attempts at TEM investigation of
fossil cuticles, may be because well preserved fossil cuticles
are hard to obtain, or because of difficulties faced in staining
and sectioning the fossil cuticle. But wherever such studies
have been undertaken, results have been highly informative.
A recent study of sun and shade leaves of the Jurassic leaf
Komlopteris nordenskioeldii has revealed four
distinguishable categories of cuticle, according to their
thickness; sun upper, sun lower, shade upper and shade lower
(Guignard et al., 2001).

Cuticle ultrastructure may also be used as a taxonomic
feature as the fossil cuticles are the most widespread unaltered
plant remains that retain morphology (cellular pattern)
diagnostic for the taxon (Maheshwari & Bajpai, 1996b). For
example, Cheirolepidiaceae, a family of Mesozoic fossil
conifers, considered to be (i) transitional between Voltziales
and Taxodiaceae (Jung, 1968), or (ii) related to Araucariaceae
on the basis of organisation of the ovule-producing organ
(Krassilov, 1982) or (iii) related to Araucariaceae and
Taxodiaceae on the basis of organisation of the foliar stomata
(Clement-Westerhof & van Konijnenburg-van Cittert, 1991),
has been found to show close similarity in cuticle ultrastructure
to that in Taxodiaceae (de Seoane, 1998). A comparison of the
ultrastructure of bennettitalean leaves (Barale & Baldoni, 1993;
de Seoane, 1999, 2003) has led to the identification of  3 types,
namely, (i) lamellate outer layer and alveolate or reticulate inner
layer (Dictyozamites, Otozamites and Zamites), (ii) alveolate
or reticulate outer layer and lamellate-reticulate inner layer
(Pterophyllum and Ptilophyllum), and (iii) reticulate outer
layer and lamellate inner layer (Cycadolepis, and bract of
Williamsonia).

Species of the fossil genera Karkenia and Yimaia are
usually considered to be Mesozoic members of the Ginkgoales.
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A recent study has shown that the megaspore membranes of
Ginkgo, Karkenia and Yimaia differ considerably in their
ultrastructure. Potential taxonomic significance of this find
has to be carefully evaluated (Zhou et al., 2002). Cuticle micro-
morphology of fossil Gingko leaves is quite similar to that of
modern Ginkgo leaves, yet the chemistry is drastically altered
(Collinson et al., 1998). Ultrastructural studies of fossil plant
cuticle may also reveal the presence of delicate structures
such as infection pegs formed as a result of fungal
infection (Archer & Cole, 1986) or changes in the ultrastructure
of the cuticle proper due to fungal infection (Bajpai, 1997). In
the cuticle of extant Rhizophora a cork-wart structure has
been identified, which is interpreted as modification of stomata
for exudation of excess salt to balance the physiology of the
plant (Farooqui & Bajpai 1999). One of the most exciting
examples of the importance of ultrastructural studies of
fossil plants is the report of grana stacks, starch deposits,
nuclei and plasmodesmata in a Miocene leaf (Niklas et al.,
1978).

Electron microscopy of fusainised plant fossils

Scanning electron microscopy has also been successfully
used for morphological and anatomical analyses of pyritised
(Poole & Llyod, 2000) and carbonified plant remains (Figueiral,
1999). It has been possible to decipher the nature of stomatal
apparatus, and the presence of a complete annulus in
completely carbonified plant remains from the Early Cretaceous
(de Seoane, 2001). SEM study of Late Cretaceous fusainised
(charcoalified) angiosperm flowers has enabled most of these
small flowers to be identified in terms of modern orders and
families, thus greatly improving our knowledge of angiosperm
evolution and radiation, particularly in the Gondwanan realm
(Taylor & Hickey, 1990; Mohr & Friis, 2000; Eklund, 2003). The
flowers from Antarctica are three-dimensional, sometimes
slightly flattened, and were obtained by wet sieving of
unconsolidated sediment. Eleven different types have been
recognised. SEM study of fossil charcoals (fusain) has
provided valuable data about the past role of wildfire and
ancient fire-prone plant communities. Charcoal is formed
commonly under natural conditions when vegetal matter is
heated in oxygen-depleted conditions during wildfire, and is
abundant in the fossil record, archaeological sites and recent
sediments.
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