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PALEOBIOGEOGRAPHIC data are often used now to
test various plate tectonic reconstructions. Terrestrial
paleobiogeography during PoT times provides an ef
fective, independent test of whether the Tethys was
a wide ocean with northward-drifting terranes (plate
tectonics) or a relatively shallow epicontinental
seaway without ocean crust flooring between su
tured Laurasia and Gondwanaland (earth expan-

sion). Attention is drawn here to certain terres.trial
biotic links between Asia and Gondwanaland, i.e.,
those exhibiting a trans-Tethyan distribution during
specific time intervals within the poT. Distributions
that include Northwest Africa and Southwest Europe,
however, were excluded from the analysis since
some plate tectonic Tethys reconstructions incor
porate a relatively broad land-connection there.
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A geological reconstruction, to be valid, should
agree with the distributional patterns of terrestrial
fossil organisms for the appropriate time-interval
since these patterns indicate where former land con
nections must have existed between continents, with
dispersal tracks acting as a control that can in turn
improve global reconstructions (cf. Tasch, 1981; Col
bert, 1982; Buffetaut, 1989). Formerly continuous
ranges of Pangaean organisms often have since be
come isolated on various continents due to con
tinental rifting and seafloor spreading.

TRANS-TETHYAN DISTRIBUTIONS

Permian

During the Lower Permian, the plant order Voj
novskyales had an extended range from South Africa
and the Congo to the Karharbari Basin of India;
Victoria, New South Wales, and Tasmania in
Australia; then northward to the Angaran floristic
realm (Pechora, Tunguska, and Kuznetsk basins,
western Mongolia, Siberia, South Maritime Territory,
Primorye, Dunay Peninsula, and Russia Island), to
Texas and Kansas (cf. Plumstead, 1963; limina,
1967b; Ie Roux, 1970; Mamay, 1976; Krassilov &
Burago, 1981).

In the Permian, the highly speciose form-genus
Glossopteris (Glossopteridae) was widespread in
Gondwanaland, occupying Antarctica, Tasmania,
Australia, southwest New Guinea, India, and south of
the present equator in Africa and South America.
During Lower Permian times, some Glossopteris
species invaded Asia in the Mamal Formation (Kash
mir) and southern Xizang (southernmost Tibet) (cf.
Hsu, 1976; Li & Wu, 1994), and in the Upper Permian
in the Tunguska and Kuznetsk basins, southern Mon
golia, and South Primorye (limina, 1967a). The Rus
sian and Mongolian Glossopteris species have very
similar venation to G. tortuosa and G. divergens from
the Late Permian of Raniganj, extreme eastern India
(limina, 1967a); G. divergenswas endemic to India,
while G. tortuosa was also found in Queensland and
South Africa. These and the Glossopterisspecies, from
Kashmir and Xizang had ranges that overlapped only
in India. The Kashmir and Xizang Glossopterisco-oc
curred with other elements of the Glossopteris flora,
and South Primorye Glossopteris were found in as-

sociation with several Gangamopterisspecies. Upper
Permian "Glossopteris' from Turkey, Thailand, Yun
nan, and Guizhou, however, are generally con
sidered too fragmentary to be properly identified or
to be misidentified.

The first glossopterids, the Protoglossopteridae,
originated in the Middle or Upper Carboniferous gla
cial deposits of the Transvaal, South Africa, and the
first Vojnovskyales (Plumsteadiella, Vannus) arose
from Gangamopteris in the Early Permian of the
Transvaal (cf. Plumstead, 1963, 1966, 1967; Ie Roux,
1966).

The Permian flora ofwestern New Guinea is most
closely rel~ted to the early Upper Permian Cathaysian
flora of Southeast Asia and is only secondarily related
to northeast Australia via Glossopteris (cf. Kon'no,
1963; Chaloner & Lacey, 1973; Lele, 1974; Li & Yao,
1982; Li, 1986; Kimura, 1987; Maheshwari & Bajpai,
1987; Li & Wu, 1994). The localities in western New
Guinea occur on either side of the so-called Tertiary
collision zone of plate tectonics between the
Australian block and the Indonesian arcs, so late
collision would not explain how these floras became
mixed (Lacey, 1975) though expanding earth recon
structions could explain this (Li, 1986).

Triassic

The reptile LystrosaurU-:5 (dicynodont), confined
to a narrow time zone (Gangetian) at the base of the
Triassic, has. a widespread distribution in South
Africa, Antarctica, India, the Shansi and Sinkiang
provinces of North China, and the Vetluga River of
European Russia. L. murrayi ranged in South Africa,
Antarctica, India, Sinkiang, and Shansi, and L. cur
vatus was found in South Africa, Antarctica, India,
and Sinkiang (cL Colbert, 1973, 1982; Chatterjee &
Roy-Chowdhury, 1974; Cosgriff, 1984). Lystrosaurus
probably originated in South Africa since the three
most primitive species overlap in distribution only
there (cf. Colbert, 1982; Cosgriff et al., 1982). Though
Lystrosaurus is sometimes considered a semi-aquatic
herbivore, its morphology indicates a fully terrestrial
herbivore that excavated burrows (King, 1991; King
& Cluver, 1991). It is often associated with dry-land
reptiles and must have spread via land connections,
being incapable of crossing ocean barriers (Colbert,
1970). Another reptile, Chasmatosaurus



SHIELDS-GEOLOGIC SIGNIFICANCE OF LAND ORGANISMS 87

(Proterosuchia), a semi-aquatic crocodile-like
predator, occurred in the Lystrosaurus and/orCynog
nathus zones of South Africa, northeastern Zambia,
Tasmania, India, and Shansi and Sinkiang in the
Lower Triassic (Thulborn, 1979).

The labyrinthodont amphibian Lydekkerinidae
(five genera) was restricted to South Africa, An
tarctica, Tasmania, Queensla:1d, India, Sinkiang,
European Russia, and Greenland in the Lower Trias
sic (d. Colbert, 1982; Cosgriff, 1984; Rage, 1988).
Though aquatic, their small size, weak limbs, and
amphibian nature would rule out transoceanic dis
persal. Lydekkerina is known from Antarctica, South
Africa, India and Sinkiang.

During Late Spathian-Early Anisian times
(Lower/Middle Triassic boundary region), the ter
restrial dicynodont tribe Kannemeyeriini was con
fined to Argentina, southern Africa, Tanzania, India,
Shansi and Sinkiang, Mongolia, and Russia (d.
Romer, 1975; Kemp, 1982; Thulborn, 1983; King,
1990). The Early to Middle Triassic genus Kan
nemeyeria was distributed in Argentina, southern
Africa, Tanzania, India, North China, and Mongolia

(d. Thulborn, 1983; King, 1990). Some Kan
nemeyeria are now regarded as a separate genus
(Rechnisaurus) , i.e., species from Argentina, Tan
zania, India, North China, and Inner Mongolia from
the Early Anisian (lower Middle Triassic) biochron
(d. Cox, 1991; De Fauw, 1993). Both Kannemeyeria
and Rechnisaurusoverlapped in Argentina and Tan
zania but occupied slightly different-aged deposits.
Shansiodon of the tribe Shansiodontini occurred in
the Early Anisian of Argentina, South Africa, Zambia,
Tanzania, the southern Urals of European Russia,
Shansi (Lucas, 1993), and the North Xinjiang-Beishan
region.

In insects, the blattid genus Samaroblatta was
restricted to South Africa, Queensland, and Japan
during the Carnian, and Triassoblatta ranged in ex
treme southern Brazil, South Africa, Tasmania,
Queensland, Canton (Kuantung province, China,)
and Japan in the Carnian (d. Fujiyama, 1973; Riek,
1974, 1976; Martins-Neto, 1987; Lin & Mou, 1989;
Kukalova-Peck, 1991). Ademosynoidesof Coleoptera
was confined to the Antarctic Peninsula, Queensland,
Japan and Central Asia then (Fujiyama, 1973;

Text-figure I-Spatial distribution of some Triassic nonmarine animals as outlined in the text: a, Lystrosaurus, b, Chasmatosauru.;~ c, Lydekken'na;
d, Rechnisaurus, e Shansiodon; f, Samaroblatla, g , Tn'assoblatta, h, Ademosynoide~~ I, Prorhya.cophtla; and J, Proparagrylklcndidae. The
CJmmeride orogenic system (bold outline) cuts across the distribution pallern. Accordmg 10 plate tectonics, its nonh boundary was the site of
Paleotethys closure, while its south boundary was the site of Neotethys closure (cf, Sengor, 1985, 1987; Nakazawa, 1985),
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Schluter, 1990). Prorhyacophila of Trichoptera was
confined tothe Carnian in Queenslandand the upper
Upper Triassic of Fergana (d. Riek, 1955; Sukatsheva,
1973; Ponomarenko & Rasnitsyn, 1974), a pattern
repeated in Cladochoristidae and Xyelidae (see Text
figure 1). Similarly Aeroptana of Phasmida from the
latest Carnian of Queensland is. closely related to
Paraptana from the upper Upper Triassic of Fergana
(d. Sharov, 1971; Ponomarenko & Rasnitsyn, 1974).
Proparagryllacrididae of Orthoptera ranged from the
Carnian of South Africa and Queensland to the upper
Upper Triassic of Fergana (Riek, 1976). Also in the
Upper Triassic the plant spore Tubercutatosporites
aberdarensiswas found in the Central Transantarctic
Mountains, Queensland, and northern Afghanistan
(Farabee et at., 1989).

The resuits of this analysis clearly indicate that at
various til1!e intervals during the P-T (Lower Permian
Norian, ca. 290-210 Ma), some north-south terrestrial
biotic exchanges did indeed occur across the Tethys
"barrier," thus favouring earth expansion reconstruc
tions over plate tectonic models since the data con
tradict a wide Tethys ocean, though displaced ter
ranes must also be considered (see below). Only
direct land connections rather than island hopping
would explain the Triassic distributions of the her
bivorousdicynodonts Lystrosaurus, Shansiodon, and

•
Rechnisaurus. Chance oversea dispersal for the plant
seeds and the insets (on rafts) appears unlikely given
a Tethys ocean 5000-6000 km wide and the fact that
equatorial ocean current gyres were oriented east
west, not north-south, in the Tethys (see Tollmann &
Tollman, 1985a, 1985b). From Lower Permian to Mid
dle Triassic times, these trans-Tethyan exchanges
were mostly by way of India, while during the Upper
Triassic these were via Queensland. Both tracks (dis
persion routes) are located in northeastern
Gondwanaland where Tethys was the widest on pia te
tectonic models, though much narrower as depicted
on paleogeographic maps (d. Termier & Termier,
1960; Kimura, 1984; Dobruskina, 1987). The Moroc
co- Spain land connection can be ruled out as a track
for thes'e organisms since Northwest Africa and
Southwest Europe were devoid of their fossils.
Regressions are recorded for the Scythian to Early
Anisian, the mid-Carnian, and latest Carnian (d. Haq

et at., 1987; Stanley, 1988; Simms & Ruffell, 1989),
coinciding with the Triassic exchanges.

PlATE TECTONICS AND DISPlACED TERRANES

If the plate tectonics theory is correct, a triangular
Tethys Sea 5000-6000 km wide in its eastern sector
separated Eurasia from eastern Gondwanaland
during P-T times. On this model, portions of southern
Eurasia and Southeast Asia represent an amalgama
tion of various displaced terranes that rifted from the
northern margin of Gondwanaland in the Permian,
travelled northward (anticlockwise) across
Paleotethys, and collided with Russia in Late Triassic
Early Jurassic, followed by a Neotethys which closed
in the Cretaceous-Paleogene due to the formation of
the present Indian Ocean. Many different scenarios
have been proposed for these events, including some
that preceed and follow P-T times, so only those
rifting and collision events that are reasonably well
constrained by geologic, paleomagnetic, and/or
paleontologic evidence will be considered here.

Early Permian glacial-marine deposits were ex
tensive along Cimmeria in Iran, Afghanistan, the
Lhasa and Changtang blocks of Tibet, and Sibumasu
(in central Burma, southwestern Thailand, northern
Malaya, and western Sumatra) Stauffer, 1985; Met
calfe, 1988). The great extent of these tilloidsand their
exotic cratonic megaclasts indicate that Cimmeria
was still joined then to the northern ma-rgin of
Gondwanaland where the Early Permian glaciations
extended northernmost in India and Australia (see
Crowell & Frakes, 1970, fig. 4). Cimmeria supposedly
rifted from the northeast Gondwanaland margin in
late Early to mid-Permian, while western Cimmeria
rifted from the northern African margin in the Late
Permian (d. Metcalfe, 1988, 1990; Wilson et aI., 1989).
The late Early Permian articulate brachiopod faunas
of western New Guinea and peninsular (Sibumasu)
Thailand were extremely similar at the generic and
species levels, suggesting these terranes were still in
close proximity then (Archbold et at., 1982) but the
Sibumasu Middle Permian brachiopods were similar
ly related to those in Indo-China and South China as
well (Metcalfe, 1988). Late Permian displaced terrane
models frequently separate Cathaysia from Cimmeria
by a wide Paleotethys ocean (e.g., Sengor, 1985;
Metcalfe, 1988; Burrentt et at., 1991; Kazmin, 1991),
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yet early Upper Permian Cathaysian floras inter
mixed with Gondwana floras along Cimmeria in
Kashmir, western and southern Xizang, northwest
Thailand, and peninsular Thailand and even within
the Indo-Australian plate itself in northeastern India
and western New Guinea (cf. Kon'no, 1965; Li & Wu,
1994) indicating instead that Cathaysia was attached
to northeastern Gondwanaland via Cimmeria at that
time. Late Paleozoic rugose coral genera indicate that
North and South China plus Tarim were joined during
Carboniferous and Early Permian times and thus
could not have rifted until the Late Permian (Smith,
1988).

Based on paleomagnetic data, initial collision of
the North and South China blocks occurred in the
Early Triassic with their fusion completed by the Late
Triassic-Early Jurassic Indosinian orogeny when
North China-Mongolia- Northeast China collided
with Siberia, closing off the Paleotethys remnant (cf.
Zhao & Coe, 1989; Lin & Fuller, 1990). This is incom
patible with the fossil floras which exhibit great
similarity between China, Siberia, and western
Europe in the Early Triassic (Dobruskina, 1987). The
Qiantang block (Central Tibet) collided with the Jin
sha foldbelt south of the Tarim carton in the Late
Triassic (Kazmin, 1991), and the Lhasa block (South
Tibet) is a continuation ofSibumasu that collided with
Central Tibet in the Late Triassic (Mitchell, 1981). The
mitial collision of Sibumasu with South China and
East Malaya-Indo-China was in the Early Triassic,
with their fusion in the Late Triassic, and Late Triassic
and Jurassic paleomagnetic data show that these
blocks were united then (cf. Klimetz, 1983; Metcalfe,
1988,1990; Hutchinson, 1989). Improved paleomag
netic data, however, suggest the major blocks of
China and Mongolia were in contact throughout the
Upper Permian and Triassic (Enkin et al., 1992).
japan was near Sino-Korea and widely separated
from Gondwanaland in the Middle Triassic (Wilson
et al., 1989). Western Cimmeria collided with south
western Eurasia during Late Triassic-Early jurassic
times (Sengor, 1979). Later, India initially collided
with Tibet in lower Middle Eocene times based on
paleomagnetic data. However, there is nearly a total
lack of endemism in the Mesozoic- Early Cenozoic
fossil vertebrates of India, suggesting instead that
India was not an island continent before colliding

with Asia (cf. Chatterjee, 1984; Sahni, 1984i Prasad &
Sahni, 1988; Briggs, 1989; Patterson & Owen, 1991;
Sahni & Bajpai, 1991; Rage & jaeger, 1995). Further
more, a recently discovered Lower Cretaceous flora
from Tingri (Xizang), just to the north of the Indian
plate, displays rather strong affinities with various
Lower Cretaceous floras from Rajmahal, Kutch, etc.
within the Indian continent (cf. Wu & Hong, 1989;
Drinnan & Crane, 1990). Australia-New Guinea ini
tially collided with eastern Indonesia during Early
Miocene times (cf. Patriat & Achache, 1984; Charlton,
1986; Burrett et al., 1991). This date is questionable,
however, since the floras and microfloras of Siberia
and China exhibit a definite connection with those of
Australia in the Early Cretaceous (Burger, 1981, 1990)
and thus Indonesia and Australia were unlikely to
have been widely separated then. Also the first fleas
the known only from the Early Cretaceous of Mon
golia, Transbaikalia, and Victoria (Kukalova-Peck,
1991).

These plate tectonic models are largely incon
gruent with the paleobiogeographical data for the
Tethys region. A number of Indian-eastern Asian
terrestrial exchanges across the Tethys occurred
throughout Early Permian to early Middle Triassic
times for plants and vertebrates (this paper), yet plate
tectonics requires that India and Southeast Asia were
separated during this 50 m.y. time-span by a wide and
deep ocean barrier. Some Late Triassic insects exhibit
links between Queensland, japan, and Fergana,
while plate tectonics again requires a wide ocean
barrier between them. Some of these models also
have China widely separated from Eurasia in the Late
Permian and colliding with it if, the Triassic, yet Late
Permian floras show widespread mixing of
Cathaysian and Angaran elements from Turkey to
Kamchatka, Mongolia, and North China, as well as
strong floristic similarities between North China and
western Europe in the Late Permian (cf. Li & Yao,
1982; Wang, 1985; Zhang et al.) 1985; Dobruskina,
1987). These models usually show North and South
China as separate blocks during their Late Permian or
even Early Permian journey across the Paleotethys
(e.g. Klimetz, 1983; Parker & Gealey, 1985; Sengor,
1987; Metcalfe, 1988, 1990; Maruyama et al., 1989;
Burrett et al., 1991). However, Early Permian corals
suggest North and South China were joined then, and
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there were floral similarities between North and
South China during the late Early and Late Permian
(d. Li & Yao, 1982; Wang, 1985). The presence of
Lystrosaurus murrayi and L. curuatus in China sug
gests eastern Asian was attached to Gondwanaland
(via India) in the Lower Triassic (Colbel1, 1974).
Lystrosaurus hedini and L. youngi (= L. curuatus
were discovered in the Fukang area north of Tien
shan in Sinkiang within the Tarim-Sino-Korean
microplate, yet the geological evidence indicates this
microplate was already accreted to the Siberian
craton in the Upper Permian and would imply that
Lower Triassic Paleotethys could only have been a
narrow epicontinental sea in this region (Zhang et aI.,
1984). Clearly the P-T paleobiogeography is primarily
at odds with various displaced terrane models
developed from geology and paleomagnetism for the
Tethys region, continental ophiolites, suture zones,
radiolarian cherts, granites and paleomagnetism for
this region are subject to alternative interpretations
(d. Coney, 1973; Carey, 1976, pp. 181- 222; Brook
field, 1977; Sonnenfeld, 1978; Sugisaki et aI., 1982;
Stocklin, 1984b; Helmcke, 1985; Petford, 1991). The
P-T paleobiogeogrpahy also appears counter to the
concepts of Tethys being floored by oceanic crust,
Cimmeria and China as displaced terranes that
travelled across the Tethys, and Triassic collision of
these terranes with southern Asia. The Paleotethys
subduction rate of at least 17 cm/yr (5000 km in 30
m.y.), though not impossible, would certainly be
unusually high by today's standards.

EARTH EXPANSION

Rapid earth expansion models would completely
close Panthalassa and the oceanic part of the Tethys
sea during P-T times (d. Carey, 1976, 1987; Shields,
1979), and an 80 per cent diameter globe would also
close the Tethys ocean (Owen, 1983). Trans-Tethyan
paleobiogeographic links for the P-T would then be
brought into much closer geographic proximity than
in plate tectonic models. India, Tibet, and Sinkiang
Mongolia would become joined throughout the P-T;
Queensland, japan, and Fergana, though not joined,
would be in closer proximity in the Upper Triassic;
China and Russia would be joined in the Late Per
mian; and North and South China would be joined in
the Late Permian, thus overcoming the various incon-

sistencies encountered between paleobiogeography
and plate tectonic models which have these regions
widely separated by ocean barriers during these time
intervals.

Panthalassa and pre-jurassic Tethys ocean may
simply be artifacts produced when reconstructing
Pangaea on a present-sized earth and create more
problems than they solve (Crawford, 1979, 1982). For
example, a double paleoequator separated by ca. 30°
of latitude is produced in non-Tethys areas when
Triassic paleomagnetic data are plotted on the
present-sized earth (Carey, 1976, p. 209). The wide
P-T Tethys ocean is required only if the paleomag
netic data are plotted on an earth of present size
(Stocklin, 1984a) such that northern continents are
positioned in reference to the north paleopole and
southern continents in reference to the south
paleopole. Yet in eastern most Pangaea, Triassic
paleomagnetic poles on the present-size earth were
ca. 50° closer ~ogether than are the present poles (d.
Schmidt, 1976, fig. 6; Besse & Courtillot, 1991, fig.
Ib-c) and thus would close the ca. 50° Tethys
paleomagnetic gap. When the paleomagnetic posi
tions of Sumatra (Triassic) and Sumba (Early jurassic)
are calculated with respect to the north and south
paleopoles on a present-sized earth, they were clear
ly below; not above, the paleoequator and near the
northwest margin of Australia (d. Sasajima et al.,
1989; Otofuji et aI., 1979).

Though there are some serious objections to
earth expansion that still need to be answered (Hal
lam, 1984), and neither theory is necessarily air-tight,
earth expansion does pass the explanation test of
how some P-T land organisms were able to readily
cross the eastern Tethys, while plate tectonics fails
this test.

EASTERN GONDWANA-SOunrEAST ASIA
REASSEMBLY

None of the existing plate tectonic or earth ex
pansion P-T reassemblies of continents surrounding
the Indian Ocean appears to completely satisfy all of
the constraints imposed by paleobiogeography. Here
a new reassembly is synthesized that appears com
patible with the paleobiogeography requirements.

The Sibumasu-Indochina-Indonesia mor-
phological fit of Carey 0976, fig. 179) agrees with the
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paleomagnetic orientation for the Lower Jurassic of
Besse and Courtillot 0988, fig. 2) and Enkin et at.
0992, fig. 25). This involves an anticlockwise rotation
of Sibumasu which then is positioned alongside the
northwest margin of clockwise-rotated Australia, as
indicated by peninsular (Sibumasu) Thailand shallow
marine invertebrate links to the Canning Basin in the
Ordovician and to the Carnarvon Basin in the Early
Permian (d. Waterhouse, 1982; Burrett & Stait, 1985;
Laurie & Burrett, 1992). as well as Lower Car
boniferous foraminifera links between Sibumasu
Sumatra and the Bonaparte Basin (Metcalfe, 1988).
The reassembly also brings the Carnian Triassobtatta
distribution in Queensland, Canton, and Japan into
north-south alignment and is in accord with Permian
Jurassic paleogeography for the region (see Lloyd,
1978).

The Gondwanaland reconstructions that best
agrees with the data from paleomagnetism, seafloor
spreading patterns, hotspot tracks, and continental
geology is diagrammed by Parish (990), Lawver et
at. (991), and Eliot 0991, fig. 6). Supporting data
from paleomagnetic poles appear in Klootwijk 0979,
fig. 9), seafloor spreading patterns in Johnson et at.
(976), Veevers et at. (980), and Lawver et at. (992),
and hotspot tracks in Duncan and Storey (992)
Storey (995). The geologic matching between
Australia/Antarctica for pre-jurassic time is given by
Veevers (976) and Veevers et at. (994), and be
tween India/Antarctica by Grew and Manton (986),
Yoshida et at. (992), and Brandon and Meen (995),
Continental dispersal in Gondwanaland was away
from a stable Africa (d. Norton & Sclater, 1979; Fair
head &Binks, 1991, fig. 2).

Some paleobiogeographic data support this
separation, rather than juxtaposition, of India and
Australia. Thus in the Middle and Late Triassic, the
Onslow microflora was confined to Tanzania,
Madagascar, northeastern India, the Prince Charles
Mountains of. East Antarctica, and western,
northwestern, and northeastern Australia (Foster et
at., 1994); and during the Early Cretaceous, Pen
toxylales was confined to the Rajmahal Hills of north
eastern India and to Victoria (Drinnan & Chambers,
1985).

The Gondwanaland reconstruction adopted here
creates a Sinus Australis between northern India and

western Australia. Early plate tectonic models first
proposed that this missing landmass was Tibet (e.g.,
Veever et at., 1975). However, because of suture zone
alignments, southern Tibet is considered a continua
tion of Sibumasu and Central Tibet a continuation of
Indo-China (e.g., Mitchell, 1981, fig. 1), such that
Tibet must be folded at a right angle along western
Australia to preserve this continuity (e.g., Gorur &
Sengor, 1992, fig. 5). Some of the latest recon
structions now favour a missing Greater India
landmass that occupied Sinus Australis between the
Indian Plate and the Himalayas which subsequently
underwent subduction beneath Tibet (d. Kloothwijk
et at., 1985; Brookfield, 1993; Ogg & von Rad, 1994),
in better accord with the paleomagnetic data, per
haps resulting from an 800 km diameter Amirante
Shiva impact crater at the KIT boundary (Chatterjee,
1992). The double crusted thickness of Tibet and its
uppermost mantle seismic velocity similarity to the
Indian shield's uppermost mantle suggest shield-like
material is present beneath Tibet (d. Barazangi & Ni,
1982; Chun & McEvilly, 1986). The Early Permian
reconstruction of Audley-Charles 0991, fig. 7) has
Tibet against Greater India and Sibumasu against
northwest Australia such that southern Tibet and
Sibumasu remain contiguous and aligned latitudina.l
ly. Inserting Paleotethys into any terrane suture zone
between the Himalayas and Tien Shan is not sup
ported by the marine faunal relationships there in the
Early Permian (d. Smith, 1988; Smith & Xu, 1988).

GENERAL CONCLUSIONS

During the Permo-Triassic, some terrestrial
plants, vertebrates and insects were able to cross over
the Paleotethys ocean between northeastern
Gondwanaland and southeastern Asia without dis
persing by way of Northwest Africa/Southwest
Europe or the Americas. Chance oversea dispersal for
the plant seeds and insects appears unlikely, and the
Triassic vertebrate distributions are best explained by
direct land connections. other paleobiogeographical
data (plants, shallow marine invertebrates) suggest
China and Southeast Asia were already in contact
with each other and with Russia in the P-T.

Plate tectonic models call upon displaced ter
ranes that these organisn;J.s could have boarded for
transport across the Paleotethys during a Late Per-
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mian to Middle Triassic journey, but the timing of the
proposed rifting, terrane transport, and collision
events is incompatible with their dispersal tracks.
Thus the Permian plants reached Russia well ahead
of the docking of most displaced terranes, while
Triassic vertebrates and insects were in Gondwa
naland and Asia Simultaneously when the wide
Tethys barrier was still in effect. Earth expansion
models, however, are compatible with these disper
sal tracks throughout the P-T, providing these or
ganisms crossed at narrow passage ways (land
bridges) during regressions. Paleomagnetic data ap
plied to an earth of the present-size create a P-T
Paleotethys that was 5000-6000 km wide in its eastern
sector but would close this ocean on an expanding
earth so that it was a narrow epicontinental shallow
seaway, thus joining northern Gondwanaland and
southern Asia. India played a central role in these
dispersal patterns, and its lack of endemism in
Mesozoic-Cenozoic fossil vertebrates suggests it was
not an island continent before colliding with Asia.
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