ON TWO NEW SPECIES OF MESEMBRIOXYLON FROM THE VICINITY OF PONDICHERRY, SOUTH INDIA

C. G. K. RAMANUJAM
Birbal Sahni Institute of Palaeobotany, Lucknow

INTRODUCTION

UP till now the published records of petrified woods from South India are rather scanty. Sahni (1931) described a few species of Mesembrioxylon, viz. M. godaverianum (near Bogapalmila in the Godavari district), M. Schmidianum (near Tiruvakkarai), M. Parthasarathyi (near Vellum, 5 miles south of Sripermatur) and one undetermined species; two species of Cupressinoxylon, viz. C.coramandelinum (near Madras) and C. alternans (near Raghavapuram, Godavari district); and lastly a single undetermined species of Dadoxylon (near Uttatur, Trichinopoly area).

During a tour of South India in December 1951, I had an opportunity to collect a large number of fossil woods near the village of Tiruvakkarai, 13 miles WNW of Pondicherry. The fossiliferous area gives the appearance of a petrified forest, containing gigantic fossil trunks some of which measure 35 to 50 ft . in length. The present paper deals with the structure of some trunks of woods, 4 to 8 ft . long and nearly 2 ft . in diameter.

Concerning the geological age of the fossiliferous locality at Tiruvakkarai, Sahni (1931) says: "The way in which the fossils lie scattered on the ground often forming natural bridges across ravines which have been cut under them by streams of rain water suggests that they have been gradually washed out of the grits and left approximately in situ. There are, however, no water-worn surfaces or other evidence of the relics having been transported since fossilization, there can thus be no doubt that they are of the same age as the rocks in which they are preserved. These Trivicary grits, as the rocks are locally named, belong to the Cuddalore series... The horizon is said to range from Eocene to Pliocene." On the basis of the material described in the present paper it is not possible to add anything to the view regarding the age of the fossiliferous beds.

DESCRIPTION

Mesembrioxylon Sahnii sp. nov.

Only the secondary xylem is preserved in the blocks representing this species. The preservation is on the whole fairly good. Growth rings are clearly defined (PL. 1, Fig. 1). Transition from early to late wood is generally abrupt but sometimes more or less gradual. Early wood is quite broad but not regular in thickness. At one portion of the cross-section it is rather limited in its breadth and the cells are generally arranged in regular rows, but occasionally irregularly arranged with sinuous walls which probably is due to the heavy crushing, crumpling and contortions during the period of fossilization. When regular, the tracheids are more or less square or polygonal in cross-section, $30-40 \mu$ in diameter. They are thin-walled, wall being 6μ thick. Late wood is always narrow, about 3 to 6 cells wide, with rather thick-walled tracheids (wall 10μ thick) which are a bit tangentially stretched, $20-25 \mu$ in size having a rather narrow lumina. Resin canals and resin parenchyma are entirely lacking. No traumatic resin canals are visible. Medullary rays are prominent and numerous. They are generally uni- to biseriate (Figs. 2, 3; Text-fig. 1), very rarely triseriate (Text-fig. 2) with rather thin-walled oval cells which are sometimes almost circular, as seen in tangential section, and are about $20 \times 16 \mu$. The rays are usually 1 to 20 cells in height, the average height being 8 cells. Ray tissue is always parenchymatous. Tangential walls of the wood elements and rays are unpitted. Neither the tracheids nor the medullary rays contain any resinous matter. In some tangential sections clear branch traces are to be seen (Pl. 1, Fig. 4).

The rather small bordered pits on the radial walls of the tracheids are predominantly uniseriate, very rarely biseriate, most of them being isolated from each other by a considerable distance. When biseriate,

Text-figs. 1-6-Mesembriozylon Sahnii sp. nov. 1 , medullary ray tissue in the tangential section. $\times 400$. 2, a rarely seen triseriate medullary ray. $\times 400$. 3,4 , bordered pitting in the radial section. $\times 400.5,6$, fusiform field pits. $\times 400$.
the pits are always opposite and when contiguous, they are not flattened. The pits are 9μ with generally small and circular pores (Text-figs. 3, 4; Pl. 1, Fig. 5). Rims of Sanio are absent. In each field there is generally a single (rarely two) fusiform simple pit (Text-figs. 4, 5; Pl. 1, Fig. 6). Rarely there are two almost round borderless pits in the field (Pl. 1, Fig. 7), the pores being rather faint and more or less vertical.

For comparisons with the various species of the gennus reference may be made to Table I.

Diagnosis - Growth rings well defined, transition from early to late wood generally abrupt, resin canals and resin parenchyma lacking, radial pits nearly always uniseriate,
circular, mostly separate, sometimes contiguous but not flattened, pore of the pits mostly round, rims of Sanio absent, medullary rays uni- to biseriate, very rarely triseriate, varying from 1 to 20 cells in height, on an average 8 cells, cells rather thinwalled, oval, abietinious pitting absent, field pits one or rarely two, fusiform and borderless.

Mesembrioxylon tiruvakkaraianum sp. nov.

This species also is represented only by the secondary xylem. The preservation is fairly satisfactory. Growth rings are clearly visible to the naked eye, but, under the microscope there is no distinction between spring and autumn wood (Pl. 2, Fig. 1). Resin parenchyma is sparsely represented. Resin canals are absent. Traumatic resin canals are not seen. The tracheids are usually arranged in regular rows and roughly square in outline with thickened walls. They are $45-50 \mu$. Thickness of the wall about 10μ.

Medullary rays are exclusively uniseriate (Text-fig. 7, Pl. 2, Fig. 2). They are 3 to 50 cells in height, the average being 18 cells. The ray cells are generally isodiametric and 15μ in diameter. They are rather thickwalled and contain black resinous matter. Pitting on the tangential walls of the tracheids is not uncommon (Text-fig. 8). Pits are bordered, uniseriate, circular, separate or slightly contiguous, and are 10μ in diameter. The pores are not well preserved. End walls of the sparsely present resin parenchyma are usually transverse (Text-fig. 7).

The radial pits rather large in size are always uni- to biseriate (Text-figs. 9, 10; Pl. 2, Figs. 3-5), isolated or contiguous. When biseriate, they are always opposite. The pits are 25μ in diameter with rather large circular pores. Rims of Sanio are not seen. Each field is completely filled up with a single large rounded or oval pit which apparently is borderless (Eiporen, Textfig. 11; Pl. 2, Figs. 6, 7). .

If compared with M. Sahnii, the present species differs in having very deep medullary rays which are nearly always uniseriate, in the presence of sparsely present resin parenchyma, in the abundant occurrence of biseriate bordered pitting and last but not least in having a single large simple rounded or oval pit filling the field.

TABLE I

Sipretios	Growils rasas	Mrmetary ray gisat	XYLIMIARFEXHYMA	Bordirimpritiva	1：atal mativa	Rims or Sive	Age
M．Woburninse Stopes	Well marked	Uniseriate，wostly 3 cells deep， but vary from 1 to 2.5 cells． uniform	Abundan！	1 （1） 2 rows scattered opposite	One large circmiar or oval pit often two anch pits per field	Present	－
M．bedfordence Stopes	Well marked	Uniseriate，up in 8 cells，uni－ form	Abundant	Unseriate， 10 chains，of 3 to 10，flattenes！by contact	One large circubar oval pie． sometimes with a border	－	$\ldots{ }^{*}$
M．Gothani Stopes	Well marker	Uniseriate，\because to + cells deep． uniform	Sparsely pracmi	1 niseriate，separate	1 to 2 large oval pits．obliquely placed	－	－
M．Solmnst Stope．	Well developed	Uniseriate，inconspicuons，very low	Abunciant	Sibbopposile rate	Not preserved	－	－
M．Schwendae Kubart	Well marked	Uniseriate， 1 to $1: 3$ cetle deep	Present	1 to 2 rous opposite or suboppo－ ute	1 to 3 ，often in in the field bor－ dered with anoblquely vertical pore	－	Cretaceous and Tertary
M．aparenchymatosum Gothan	－	Uniseriate	Abeent	－	1 to 2 elliptical circular pits	－	Tertary
M．antarctian（oothath	－	じnisprint＂	Spanily proent	Whiserman anparite	－	－	Tertary
M．Mulleri Schanh	－	－	－	l＇mserate and widele upparate	Huthle asemt，obligue	－	Pliocene
M．Hookeri：Cupressimoxy Ion Hooker Arber	Well marked	Uniseriate．verv rarely up to 30 cells	Abundant	Inmertate，mparate．tanimulal pitting present	Silugle large itmple pit	Clearly siciowt	Certiary
M．Shanense Sabmi	Scareely vistile	I＇nisermate very low IRmalls 1 to 2 cells hish	Not seen	1 miseriate circular．sepurdue	One large borderfen pit（Eipor ren ）	－	Jurasicic
M．Setrardi Sahui	Abrupt transition from carly to late wond	Uniseriate． 1 w l cell high	Present	「onseriate．separate．tanbentiak pittug prevelt	One large circular borderkes put	Present	Purassic
M．Schmodianum（Scbıl． den）Sahnı	Faintl；marked	Uniseriate，rarely biseriate， 210 100 cells in height，unformis． thick walled cells	$\begin{aligned} & \text { seanty cells many } \\ & \text { time longer thay } \\ & \text { broad } \end{aligned}$	1amb or biserinte circular．nisual－ Iy separate	One or two large，pores slit－ like．obliquelvertica！	－	$\begin{aligned} & \text { Tertiacy (exact age ut } \\ & \substack{\text { kiowna }} \end{aligned}$
M．godaverianumsahni	Abscnt	Uniseriate． 2 to is celis high， uniform	Abundant．full of resin	Univeriate，contiguons but rounded．if biseriate suboppo－ ate or evell altermate	2 to 6 bordered pits，pore sht－ like，obliquely rertical	－	\}urasite
M．malcrianum Sahni	Distanct to the nak－ ed eye but dis－ appear under the microscope	Unseriate，very low，warcoly 3 cells in height	Abent	liniseriate，contiguou－but cir－ cular，pore obligue	3 to 10，usualiy + to $i j$ ，border oval or circular．pore narrow． obliquely vertical	Not seen	$\underset{\substack{\text { Malerı } \\ \text { wana }}}{ }$ Upper ciond
M．Parthasarathyi Sahni	Fainty marked	Uniseriate． 1 to 18 cells high	Not any．	tlways unseriate．separate or contripucs	2 to 3 or $\begin{gathered}\text { tround bordered pore }\end{gathered}$ narrow，obliquely wertical	－	Wripremature Group Kota stake U＇pper （Sondwana）
M．sp．	Well marked，yers narrow	1 in 3－seriate．frequently bu sermate．it to 4.5 cells high	Not seen	－	1 to 3 large，frequently wos， placed one above the other， circular or aval	－	sripremature（aroup （ Kota stage I＇pper （iondwana）
M．fusiforme Sahn	Well marked	Uniseriate，Msuatlv 3 to ：）cell－ high．cell：higher than hroad	Not seen	linterrate，just contiguous， fllipter or almost circular	1 to 2 long，simple fustorms． pits obliquely from wall to wall；sometimes 3 or 4 smaller ones	Consplatull：	Tertiary？
M．Amiale Sahn	Narrow growth rugs	Usually 3 to 4 cells，highest \＆－rav cells，higher than broad	Present	Huscrimb，etther separate or circulat；or just contiruous and elliptic	1 to 2 simple oblique pits	－	Tertiary，${ }^{\text {a }}$
M．Sahnii n．sp．	Well marked	Uni－to triserlate， 1 to 20 cells in height，average height \＆ cells，ray cells isodametric	Lacking	Nearly always uniseriate，cir－ cular，separate or contiguons． but not flattened	Single fusiform put whonot any border	Not seen	Tertiary（？）
M．tirwokkaraianun n．sp．	Faint	Uniseriate， 3 to 50 cells in height， average height 18 cells．Cells rather thick－walled	Sparse，enid walls transverse	Uni－to biseriate，separate，op－ posite when biseriate，tangen－ tial pitting present	Large single borderless pit fills the field	Not seen	Tertiary（？）

Text-figs. 7-11-Mesembrioxylon tiruvakkaraianum sp. nov. 7, tangential section showing the uniseriate medullary rays and resin parenchyma. $\times 200$. 8, uniseriate bordered pits on the tangential walls of the tracheids. $\times 400.9,10$, bordered pitting in the radial section. $\times 400$. 11, field pitting. $\times 400$.
M. Schmidianum described by Sahni (1931) from the same area resembles to some extent the present species. The faint growth rings, the scanty resin parenchyma and the height of the medullary rays are the features which are common to both the species. The differences at the same time are none the less prominent. The absence of the biseriate medullary rays, the presence of tangential pitting, the rather low height of medullary rays when compared to M. Schmidianum and finally the presence of a single large borderless pit in the field are the characters that distinguish M. tiruvakkaraianum from M. Schmidianum.

For comparisons with other species, see Table I.

Diagnosis - Growth rings faintly marked, resin canals absent, resin parenchyma sparsely present with transverse end walls, radial pits of tracheids uni- to biseriate, usually separate, always opposite, tangential pits circular, uniseriate, medullary rays rather long (up to 50 cells), cells thick-walled, field pit single rounded or oval, large and borderless.

DISCUSSION

Fossil woods, showing apparent similarity with the genera Podocarpus, Dacrydium and Phyllocladus which belong to the family Podocarpaceae, are referred to the artificial genus Mesembrioxylon by Seward (1919). The genus, as defined by Seward himself, comprises woods in which "the general features are similar to those associated with Cupressinoxylon, but the xylem parenchyma may not be always present and the medullary ray cells have one or two large simple pits, or two or more smaller bordered pits in the field, the pore being rather vertical than horizontal" (SEWARD, 1919).

Gothan originally created two genera, Podocarpoxylon agreeing in all its characters with Podocarpus and Dacrydium, and Phyllocladoxylon generally agreeing with Phyllocladus. Gothan's Podocarpoxylon generally stands for woods lacking resin canals and possessing xylem parenchyma not necessarily confined to a particular region of the annual ring. In P. aparenchymatosum Gothan, however, xylem parenchyma is absent. The bordered pitting is uni- to biseriate; when biseriate, the pits are opposite. Rims of Sanio are present and the pits in the field are podocarpoid, i.e. a few apparently bordered pits characterized by elliptical or linear pore which is vertical or oblique. Sometimes the field pits may be large and simple. Medullary rays are uniseriate and generally of low height: The genus Phyllocladoxylon resembles, in almost all the important features, Podocarpoxylon but differs chiefly in the presence of large simple pits (Eiporen) in the field. No clear indication of rims of Sanio, no resin canals and no resin parenchyma are to be seen in Phyllocladoxylon. With such slight anatomical differences between Podocar poxylon and Phyllocladoxylon, it is very difficult to keep these two genera apart. Seward, therefore, created the genus

Mesembrioxylon with the intention of merging both these genera into one. Stopes (1915) agreed in the idea that there should not be two separate generic names, but united Gothan's two genera under a single genus Podocarpoxylon. The use of the name Podocarpoxylon, either as defined by Gothan or Stopes, implied a very definite relationship to the recent genus for which there are hardly any potent reasons. Seward says: " In this instance as in many others, the anatomical characters do not enable us to assign fossil species to a position within the coniferales sufficiently definite to be denoted by the use of a name implying close relationship to a particular genus as distinct from a group of
allied types" (1919, p. 203). Thus it seems preferable to refer the present woods to the form genus Mesembrioxylon. They may be compared to some extent to the recent Podocarpaceae, but we cannot prove definitely, as yet, that there is any real affinity to that family.

AGKNOWLEDGEMENTS

I take pleasure in according my indebtedness to Professor J. Hsü for his constant help throughout the progress of this work. I am also extremely grateful to Professor O. A. Höeg and Dr. R. V. Sitholey for their suggestions.

REFERENCES

Arber, E. A. N. (1904). Cupressinozylon Hookeri sp. nov, a large silicified tree from Tasmania. Geol. Mag. 1(5).
Gothan, W. (1905). Zur Anatomie lebender und fossiler Gymnospermer-Hölzer. Abh. K. Preuss. Geol. landes. (N.F.) 54(1).
Idem (1908). Die fossilem Hölzer von der Seymour und Snow Hill-Insel. Wiss. Ergeb. Schwed. Südpolar-Exped. 1901-03. 3(8).
Kubart, B.,(1911). Podocarpoxylon Schwendae, ein fossiles Holz von Altersee (Oberösterreich). Osterr. bot. Zeitsch. 5.
Sahni, B. (1920). Petrified plant remains from the Queensland Mesozoic and Tertiary for-
mations. Queensland Geological Survey. 267: 22-25.
Idem (1931). Revisions of Indian fossil Plants. Part II - Coniferales (b. petrifactions). Mem. Geol. Surv. India. Pal. Indica. N.S. 11: 54-77.
Idem (1937). A Mesozoic coniferous wood (Mesembrioxylon Shanense sp . nov.) from the Southern Shan States of Burma. Rec. Geol. Ind. 71: 380-388.
Seward, A. C. (1919). Fossil plants. 4. Cambridge.
Stopes, M. C. (1915). Catalogue of the Mesozoic plants in the British Museum (Nat. Hist.). The Cretaceous Flora. Part II - Lower Greensand (Aptian) plants of Britain. London.

EXPLANATION OF PLATES

Plate 1

Mesembrioxylon Sahnii sp. nov.

1. Transverse section showing the growth rings. $\times 50$.
2. Tangential section showing uni- and biseriate nature of the medullary rays. $\times 50$.
3. Irregularly arranged tracheids in tangential section probably caused by heavy crushing and crumpling during fossilization. $\times 50$.
4. Branch trace in a tangential section. $\times 50$.
5. Part of the radial section showing the uni-
seriate circular and separate bordered pits. $\times 200$.
6. Fusiform pits in the field. $\times 200$.
7. Field with two faintly bordered pits. $\times 200$.

Plate 2
Mesembriozylon tiruvakkaraianum sp. nov.

1. Transverse section. $\times 50$.
2. Tangential section showing the uniseriate medullary rays. $\times 200$.

3-5. Bordered pitting in the radial section. $\times 200$.
6,7 . Pits in the field. $\times 200$.

I

7

