DEVONIAN MICROFOSSILS FROM THE CÅLÅRASI ZONE OF THE MOESIC PLATFORM, RUMANIA

B. S. VENKATACHALA¹, D. BEJU² & R. K. KAR³

Birbal Sahni Institute of Palaeobotany, Lucknow

ABSTRACT

The present paper deals with the systematic description of Devonian palynological fossils recovered from the subsurface sediments of the Moesian platform, south-east of Bucharest, Rumania.

INTRODUCTION

WENKATACHALA and Beju (1961) in a preliminary report assigned Upper Devonian age to an assemblage recovered from the Cãlãrași zone situated in the Moesian platform, south-east of Bucharest.

The Moesian platform is situated in the inner part of the Carpatho-balkanic arch, bordered north-northwest by the Precarpathean depression and south-southwest by the Prebalkanic depression.

Drillings in the Moesian platform show a succession from Palaeozoic to Neogene rocks. The only Palaeozoic formation well recognized here is the Gotlandian in the Bals-Optasi where fragments of *Monoprinoidea* have been recovered (VENKATACHALA & BEJU, 1961). In the basement, the drillings penetrated a complex of rocks formed of brown, poorly bituminous limestones in its upper part, greyish-black anhydrites in the middle and black bituminous limestones at the base. Whole complex shows more or less advanced dolomitization.

Four samples were processed for palynological fossils, except for a sample from an argillaceous intercalation in the middle anhydrite occurring at a depth of 3,134 metres; the other samples proved barren.

The present paper deals with systematic description of palynological fossils recovered from this sample.

SYSTEMATIC PALYNOLOGY

Anteturma	_	Sporites H. Pot. 1893					
Turma	-	Triletes (Reinsch) Pot. & Kr. 1954					
Subturma	_	- Azonotriletes Lub. 1935					
Infraturma		Laevigati (Benn. & Kids.) Pot. 1956					

Genus – Retusotriletes Naum. 1953

Type Species — *Retusotriletes simplex* Naum. 1953.

Retusotriletes sp.

Pl. 1, Fig. 3

Description — Circular 70-80 μ . Trilete, rays extending up to three-fourths the radius. Contact area distinct, arcuate curvature well defined. Exine up to 2.5 μ thick, conate, sculptural elements very closely placed forming pseudomicroreticulate pattern.

Remarks — Retusotriletes is quite common in Devonian sediments and has been reported from Russia (NAUMOVA, 1953), Canada (RADFORTH & MCGREGOR, 1954) and Australia (BALME, 1960). The species described and figured by them generally show distinct arcuate curvature and psilate to ornamented exine.

Infraturma – Apiculati (Benn. & Kids.) Pot. 1956

Genus – Apiculatisporis Pot. & Kr. 1956

Type Species — *Apiculatisporis aculeatus* Pot. & Kr. 1955.

Apiculatisporis cf. A. elegans McGr. 1961 Pl. 1, Fig. 1

Description — Spore circular, 54 μ . Trilete hardly perceptible. Exine $\pm 2.5 \mu$

Present address — 1. Palynology Laboratory, Research and Training Institute, Oil and Natural Gas Commission, Dehra Dun.

^{2.} Geological Institute, Ministry of Petroleum and Chemicals, Bucharest, Rumania.

^{3.} Birbal Sahni Institute of Palaeobotany, Lucknow, India.

thick, densely ornamented with coni to form pseudomicroreticulate surface. Coni $\pm 1~\mu$ long.

Remarks — *Apiculatisporis elegans* described by McGregor (1961) from the Melville island of Canadian Arctic Archipelago is bigger in size and possesses quite distinct trilete rays extending more than half the radius.

Genus – Verrucosisporites (Ibr.) Smith et al. 1964

Type Species — Verrucosisporites verrucosus Ibr. 1933.

Verrucosisporites sp.

Pl. 1, Fig. 2

Description — Spore subcircular, 40 µ. Trilete, rays ill-developed. Exine 3 µ thick, ornamented with irregularly distributed verrucae, sometime interspersed with coni.

Comparison — The specimen illustrated is comparable to V. uncatus (Naum.) Rich. and V. grandis (Naum.) Rich. 1964.

Genus - Hystricosporites McGr. 1960

Type Species—*Hystricosporites delectabilis* McGr. 1960.

cf. Hystricosporites sp.

Pl. 1, Fig. 8

Description — Spore originally radial, 82 μ . Trilete, rays indistinct, hardly traceable. Exine $\pm 3 \mu$ thick, ornamented with tapering, bifurcating processes on both sides; processes 6-22 μ long, 3-10 μ broad.

Turma	_	Zonales	(Benn.	&	Kids.)	Pot.
		1956				

Subturma – Zonotriletes Waltz 1935

Genus – Ancyrospora Rich. 1960

Type Species—*Ancyrospora grandispinosa* Rich. 1960.

Ancyrospora cf. A. grandispinosa Rich. 1960

Pl. 1, Figs. 5, 6, 9, 11

Description — Spores badly preserved, subtriangular to subcircular, size range 90-150 μ . Central body \pm indistinct, generally confronting with the overall shape. Trilete distinct to indistinct, rays straight or slightly sinuous, extending \pm upto the equator in some specimens. Exine spinose, spines strongly built, bifurcate or pointed.

Anteturma – Pollenites Pot. 1931 Turma – Saccites Erdtm. 1947 Subturma – Monosaccites (Chit. 1951) Pot. & Kr. 1954

Genus – Auroraspora Hoffm. Stap. & Mall. 1955

Type Species — A. solisortus Hoffm., Stap. & Mall. 1955.

Auroraspora sp.

Pl. 1, Fig. 7

Description — Poorly preserved, subtriangular, 96 μ . Central body \pm 40 μ , trilete mark distinct, reaching upto the margin of the pseudosaccus (saccizonate). Saccus infrareticulate.

Incertae sedis

Genus – Tasmanites (Newton) Sch., Wils. & Bent. 1944

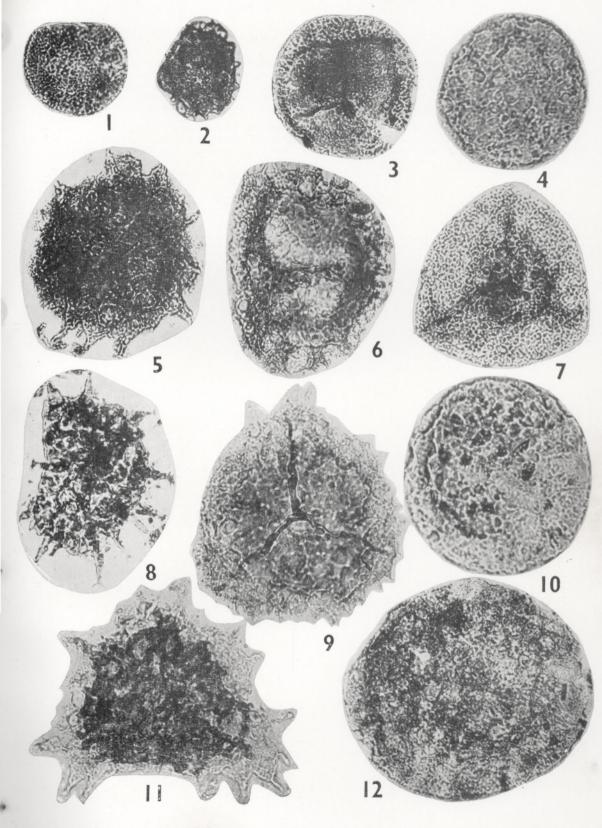
Type Species — Tasmanites punctatus Newt. 1875.

Tasmanites sp.

Pl. 1, Figs. 4, 10, 12

Description — Circular, 60-130 μ , (illustrated specimens $80-130 \mu$) granulose, verrucose or pitted. This is perhaps due to secondary preservatory effect.

Comparison — Comparison with other known species is difficult because of bad preservation.


PALYNOLOGICAL COMPOSITION

The general preservation and representation is not satisfactory. The fossils are mostly mutilated during preservation.

Tasmanites is dominant in this association $(\pm 58 \%)$ followed by spores with bifurcate processes referred here to cf. Hystrico sporites and Ancyrospora $(\pm 20 \%)$, the other spore genera are meagrely represented.

THE PALAEOBOTANIST, VOL. 17

VENKATACHALA et al. PLATE 1

VENKATACHALA et al.- DEVONIAN MICROFOSSILS FROM THE CALARASI ZONE 67

REFERENCES

- BALME, B. E. (1960). Upper Devonian (Frasnian) spores from the Carnarvon basin, Western
- Australia. Palaeobotanist. 9 (1 & 2): 1-10. McGREGOR D. C. (1961). Spores with proximal radial pattern from the Devonian of Canada. Geol. Surv. Can. 76: 1-11. NAUMOVA, S. N. (1953). Spore-pollen complexes of the Upper Devonian of the Purgin relation
- of the Upper Devonian of the Russian platform and their stratigraphic significance. Trans.

- Inst. Geol. Nauk. Akad. SSSR 143: 1-204. RADFORTH, N. W. & McGREGOR (1954). Some plant microfossils important to Pre-Carboniferous stratigraphy and contributing to our knowledge of the early floras. *Can. J. Bot.* **32**: 601-621.
- VENKATACHALA, B. S. & BEJU, D. (1961). Aspura prezentei Devonianului in fundamentul Zonei Câlârasi. *Petrol Gaze*. **12** (11): 494-495.

EXPLANATION OF PLATE 1

(All photomicrographs \times ca. 500)

1. Apiculatisporis cf. A. elegans

2. Verrucosisporites sp.

3. Retusotriletes sp.

4, 10, 12. Tasmanites sp.

5, 6, 9, 11. Ancyrospora cf. A. grandispinosa. 7. Auroraspora sp.

8. Cf. Hystricosporites sp.