A TENTATIVE CODE OF THE ANCIENT AND DERIVATIVE CHARACTERS OF POLLEN GRAINS OF ANGIOSPERMS

L. KUPRIANOVA

Institute Botanique Komarov, Leningrad

ABSTRACT

For any studies in the comparative morphology of pollen, as well as for any application of palynological data to plant taxonomy, phylogeny and palaeopalynology it is very important to be able to estimate the antiquity of the more recency of characters.

The palynological code proposed is the first step in this direction. Similar codes have been published earlier by other authors for both vegetative and generative organs of Angiosperms.

For the establishment of the antiquity of characters it is necessary to take into consideration the phenomenon of heterochrony; therefore not a single character, but as many as possible should be used.

F^{OR} any studies in the comparative morphology of pollen, as well as for any application of palynological data to plant taxonomy, phylogeny and palaeopalynology, it is very important to be able to estimate which characters are ancient and which are of recent origin.

The palynological code proposed is the first step in this direction. Similar codes have been published earlier by other authors for both vegetative and generative organs of Angiosperms, but this is the first code for pollen.

The code expresses my ideas about the evolution of Angiosperm pollen grains.

In this paper I shall restrict myself to one of the characters of pollen grains, viz. the character of aperture. The spore apertures had initially three fissures; they corresponded to the places of contact of spores in the tetrahedral mother tetrads. The unifissurate apertures developed in different groups later. They were derived from the trifissurate apertures in connection with the formation of the square tetrads. Later, in the end of Palaeozoic the spores began to appear with proximal and distal apertures having three fissures or one. The appearance of the distal apertures in addition to proximal apertures was discovered in different groups of vascular plants.

The spores and the pollen grains of some recent Pteridophyta and Gymnospermae

still retain the traces of bipolar apertures (*Abies Mill., Osmunda L. Pl. 1, Figs. 5 & 6*).

Distally and proximally trifissurate aperturable pollen were also observed in some fossil Angiospermae (Duplosporis Pflug., PL. 1, FIGS. 3 & 4). Rudimentary bipolar apertures can be also observed in the pollen grains of some recent species. For instance, one can see the trifissurate sign on the pollen grains of Myrica gale L.(PL. 2, FIG. 7). Rudimentary trifissurate signs are present in the pollen grains of many genera of Dicotyledons growing now in the Southern Hemisphere (Balanophora capensis Eckl. et Zeyh., PL. 2, FIG. 11, 12; many species of Loranthus L., PL. 1, FIG. 2, PL. 2, FIGS. 9, 10), as well as in the fossil pollen grains from the Upper Cretaceous deposits.

The evolution of the pollen grains of Dicotyledons proceeded in the direction of the gradual disappearance of the polar apertures and formation of the equatorial apertures. Initially the latter were closed (*see*, for instance, *Pemphixipollenites* Stover, PL. 1, FIG. 1), later they became open apertures.

In the pollen of the recent Dicotyledons the equatorial type of the apertures, typical for them only prevails. The apertures of the pollen grains of Dicotyledons have attained the highest level of specialization and the greatest diversity among the apertures of all the Cormophytes. As for the pollen grains of Monocotyledons, those of the recent species have no proximal apertures nor, at least, any traces of tetradscars. The pollen grains of the most ancient representatives of this group are radially symmetrical with a trifissurate aperture at the distal pole.

In the pollen grains of Monocotyledons in connection with the establishment of bilateral symmetry, the trifissurate aperture was transformed into unifissurate and later into sulcate.

As it is generally known, the pollen characters are the most conservative than those of many other plant organs. Consequently it might be assumed that the pollen of the most ancient Angiospermae had a sporelike appearance.

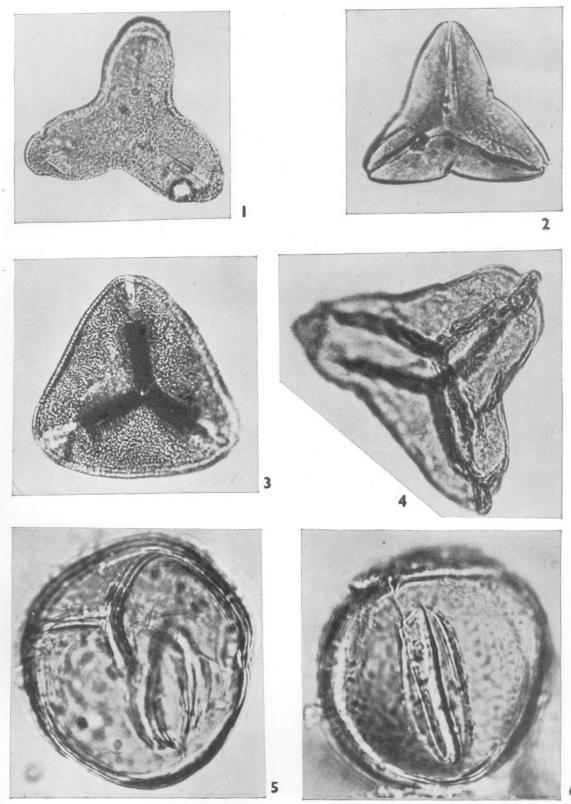
The fcssil finds of the pollen of the first Angiospermae are still very scanty. Accordingly they cannot serve as a basis for the ϵ xplanation of the entire process of the evolution of pollen grains and of their apertures. However, all the finds were taken into consideration in the course of the code.

CHARACTERS	Ancient	DERIVATIVE
Type of mother tet- rads	tetrahedral	square and other types
symmetry	radial	bilateral
apertures	Taulai	Dilateral
position	polar	equatorial or
form	fissure with- out membranes	global colpate cover- ed by mem- branes, por-
	memoranes	ate, colpo- rate, acol- pate
size	large	small
number	1-3	4 and more
rudiments	non-function- ing polar	absent
	scares, ar- ches, polar harmomega- thus	
length of polar axis	less than	more than
	equatorial diameter	equatorial diameter
exine		
nexine	rather thick	faintly per- ceptible scar- cely seen or lacking
sexine	thin, equal to nexine	
sculpture	tuberculate medium sized	reticulate or spinose very conspicuous or minute with traces of reduction
columellae	simple	branched
regillum	absent and thin	present and thick
suprategillum	absent	present
intine	thin	thick
exintine	absent or very thin	thick, under pores or
		layer of uni- form thick- ness
	solitary .	in groups

For the establishment of the antiquity of characters it is necessary to take into consideration the phenomenon of heterochrony.

For example, the rudimentary polar aperture persisting in the pollen grains of *Carya* Nutt. (PL. 2, FIG. 13) is an ancient character, while the perceptible onci under the pores is the evidence of an advanced specialization in the direction of adaptation to anemophily. The pollen grains of the ancient family Lauraceae are characterized by a considerable reduction of the exine and by the total disappearance of the apertures.

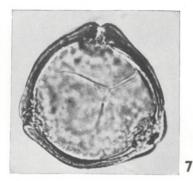
Therefore, the evolution of characters should never be based upon a single character, but upon as many as possible.

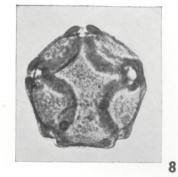

The establishment of affinities is greatly complicated by the phenomenon of convergence in the morphology of pollen.

Many families of Dicotyledons have tricolporate pollen grains that might have developed independently, by different pathways. One of those pathways that have led to the formation of the tricolporate type can be traced via the tricolpate (PL 2, FIG. 14) to the tricolporate grains. This is proved by the fact that both types are encountered within the same family (e.g. in Molluginaceae, Papaveraceae, Linaceae) or even within the same genus (e.g. Salix L.).

The other direction can be traced from the bipolar trifissurate to the tricolporate pollen grains. This way is more complicated; it can be detected in the course of examination of fossil pollen grains. The evolutionary sequence thus established proceeds from the pollen grains of the *Duplosporis* Pflug type and leads to the bipolar trifissural grains, with the simultaneous presence of oroid equatorial apertures, or to the grains of the Pemphixipollenites Stover type. The further evolution of the apertures consists in the reduction of fissures at the points of their junction at the poles, while the free ends of these fissures directed meridionally cross the oroids equatorial apertures. This can be exemplified by the pollen grains of Symplocacites N. Mtchedlishvili. In the course of the further development the fissures are covered with membranes: they expand, the apertures of ores also be come wider. Finally the evolutionary sequence ends with usual tricolporate type (PL. 2, FIG. 9). Separate links of this evolutionary series can be seen in the pollen of Loranthaceae.

The further study of the comparative morphology of fossil and recent pollen, the THE PALAEOBOTANIST, VOL. 15

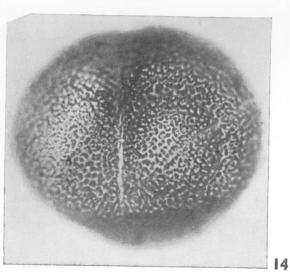

KUPRIANOVA — PLATE 1



b

KUPRIANOVA - PLATE 2

THE PALAEOBOTANIST, VOL. 15



10

study of the development of pollen grains and the study of the abnormalities in the structure of pollen due to hybridization, undoubtedly will lead the palynologists to the successful solution of these complicated, still mysterious and interesting problems.

ACKNOWLEDGEMENTS

The author expresses her gratitude to Dr. N. Bondarenko, who had kindly given her some photomicrographs of fossil pollen grains.

REFERENCES

- ERDTMAN, G. (1952). Pollen morphology and Plant taxonomy. Angiosperms. (An Introduction to Palynology. I). Almqvist et Wiksell. Stockholm.
- KOZO-POLJANSKY, B. M. (1945). New achievements of "pollenistica" and the problem of evolution of Higher Plants. Adv. mod. Biol. Moscow. 19 (2): 236-247.
- KUPRIANOVA, L. (1954). Sur la phylogenie des Monocotylédones (d'après les données palynologiques).

PFLUG, H. (1953). Zur Entstehung und Entwicklung des Angiospermiden-Pollen in der Erdegeschichte. *Palaeontographica*. 95B(4-6): 60-171.

- VISHNU-MITTRE (1964). Contemporary thoughts in Palynology. *Phytomorphology*. 14 (1):135-147.
- WODEHOUSE, P. (1935). Pollen grains. Their structure, identification and significance in Science and Medicine. New York & London.

EXPLANATION OF PLATES

PLATE 1.

Photomicrographs of spores and pollen grains. \times 1000.

- 1. Pemphixipollenites sibiricus Bondar.
- 2. Loranthus dregei Eckl. et Zegh.
- 3. Duplosporis borealis (Chlon.) Bondar.
- 4. Duplosporis ocliferius (Chlon.) Bondar.
- 5-6. Osmunda cinnamomea L.

PLATE 2.

Photomicrographs of pollen grains. \times 1000.

- 7. Myrica gale L.
- 8. Alnus glutinosa (L.) Gaertn.
- 9. Loranthus eugenioides H.B.K.
- 10. Loranthus punctatus Ruiz et Pav.
- 11. & 12. Balanophora capensis Eckl. et Zeyh.
- 13. Carya texana Bukley.
- 14. Dipterocarpus insignis Thw.
- 15. Cornus sanguinea L.