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ABSTRACT

Leavitt SW & Baisan CH 2001. Variability of seasonal 8 13C patterns in Apache Pine from Southern
Arizona. USA. Palaeobotanist 50(1): 117-123.

Seasonal 81.'C changes observed in tree rings offer the potential of reconstructing environmental
conditions at finer than annual resolution. In the American Southwest. an opportunity to better expose
environmental influences on tree-ring 8uc at seasonal scales is fortuitously afforded by the presence of a
time marker within rings. The strong winter-surruner bimodal precipitation distribution is conducive to
formation of a false-Iatewood band in the middle of the growing season. approximately June. after which
normal growth usually resumes to the end of the growing season. The variability in seasonal SUC patterns
in the 1991-1993 growth rings of two Apache pine (Pinus engelnwnnii) containing these false rings was
investigated by descriptive comparison (1) between radii if' a tree. (2) between different vertical heights in
the trunks of both trees. and (3) between trees. The patterns of seasonal SUC change in tree-ring cellulose
were broadly similar between radii. but with differences in amplitude and differences in absolute values of
up to nearly 2%c. Between trees. the isotopic patterns were quite similar: concave downward for 1991 and
1993. and continuously increasing in 1992. There were di ITerences of ca. 0'5%0 among paltems at di fferent
heights within a tree. but there was no common gradient in the isotopic change with height. Comparison
of the seasonal patterns with environmental variations suggests that they are more tightly linked to moisture
conditions than to temperature or changes in atmospheric sue.

Key-words-Tree rings. Carbon isotopes. Drought. Pillus engellllallllii. False rings. Latewood.
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INTRODUCTION

M EASUREMENTS of stable-carbon isotopic
composition (S13C) of successive growth
increments in leaves (Leavitt & Long, 1982;

Lowden & Dyck, 1974; Smedley el al., 1991; Tieszen &
Boutton, 1989) and tree rings (Leavitt & Long, 1982, 1985,
1991; Leavitt, 1993; Loader et aI., 1995; Ogle & McCormac,
1994; Walcroft et al., 1997; Wilson & Grinsted, 1977) exhibit
seasonal changes, perhaps containing a climate signal. For
example, empirical results of seasonal intra-ring (Sl3C patterns
from several field studies (Leavitt, 1993; Leavitt & Long,
1991; Livingston & Spittlehouse, 1996) suggest that soil water
conditions, presumably influencing stomatal conductance, are
frequently the primary driving mechanism for the seasonal
(Sl3C observed in tree rings. This is consistent with carbon
isotope fractionation models (Farquhar et al .. 1982; Francey
& Farquhar, 1982) that indicate in addition to (SI3C.
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Fig. 2-Location of cross-sections sampled from two trees deposiled in nood
debris at the lower Rhyolite Canyon Site.
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, plant (Sl3C is influenced by rates of stomatal
conductance and photosynthetic assimilation, both of which
can be affected by environmental factors.

The southwestern U.S. experiences precipitation from
winter frontal storms and summer monsoon airmasses. The
late spring-early summer interval between these bimodal
precipitation peaks is hot and arid, contributing to the frequent
formation of a false latewood band ("false ring") prior to
mid-summer re-initiation of cambial growth (Fig. j). This
false latewood provides a time marker (representing
approximately the very end of June and beginning of July)
with which to more precisely explore timing of correlation
between isotopic composition and climate.

The presence of the time marker also offers the potential
to help resolve remaining uncertainties about seasonal
isotopic patterns in tree rings, including the period they
represent and the fidelity of their signal at different locations
in a tree. This study expands previous baseline isotopic work
on seasonal (S13C variation in ponderosa pine species in the
Southwest, USA (Leavitt et al., j 998. j 999). by exploring
seasonal variation of (S13C in tree rings from different radii,
in different years and at various heights in which the false
latewood band is in different locations within the ring or not
present at all.
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I-The 1991-93 dai Iy stem size progression of a nearby Pinus
englemannii tree monitored by dendrometer, along with photomi
crograph of corresponding cell-size patterns. Growth hiatus and
stem shrinkage in the second half of June occurs as the false ring
(arrows) is formed. Missing data was interpolated.
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METHODS

The Lower Rhyolite Canyon Site in Chiricahua National
Monument (elevation ca. 1620 m; location ca. 32'00o N,
109·35°W), southeastern Arizona, was visited on I December
1994 to sample Apache pine (Pillus engeimallnii) trunks of
dead trees that had been deposited with debris in and near
the streambed by major flooding that occurred the last few
days of August 1993. These tree trunks had the disadvantage
that we did not know their exact provenience, but it was
probably in the lower reaches of the canyon just upstream
from the site. It had the advantage that we were free to sample
as much material as needed. We sampled cross-sections from
different heights of two mature trees (Fig. 2).

The cross-sections were surfaced to enhance growth ring
recognition, and the outer rings were cross-dated. Two
opposite radii were sampled from each cross-section to
minimize effects of circumferential isotope variability (Leavitt
& Long, 1984, 1986). The 1991, 1992 and 1993 rings from
each radius were sampled by subdividing each ring into 4
equal parts with a razor knife under magnification. The
subdivisions from the 2 radii from section 4C were processed
separately to determine the extent of circumferential
variability. Additionally, the subdivisions from each radial
pair (including replicate radial samples from 4C) were pooled
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Fig. 3-Position of latewood bands (indicated by shading) in each of the tree
rings. with growth proceeding from left 10 right. The rings were not
actually the same width but the 4 subdivisions in each ring (dotted
lines) were approximately equal width.

to a single series of samples from each cross-section. The
holocellulose component of each segment was isolated from
ground wood (20-mesh) by removing extractives with toluene
ethanol, treating with hot water, and delignifying i~ an acetic
acid-acidified sodium chlorite solution (Leavitt & Danzer,
1993). Holocellulose was combusted to CO

2
in the presence

of excess oxygen in a recirculating microcombustion system.
The CO, was measured mass-spectrometrically and results

are expressed as ol3C (=[((I.1C/ 12C)"mplc > C)C/ J2C)""nd.,) -I] x
1000) in permit (%0) with respect to the international PDB
standard (Craig, 1957). Repeated combustion and analysis
of a holocellulose laboratory standard during the study gave
a standard deviation of 0.27%0. This value is larger than the
long-term reproducibility for analysis of the laboratory
standard (ca. 0.2%0), but it is still quite satisfactory to
distinguish and compare the isotopic patterns in this study.

RESULTS AND DISCUSSION

The position of false latewood and latewood bands with I n
each of the radial samples is depicted in Fig. 3. A false
latewood band appears in the majority of the rings, but it
was not clearly identifiable in about 25% of the rings. The
presence of false rings and at least partial latewood in most
of the 1993 rings indicates that this year's xylem growth had
nearly been completed by the time of the catastrophic flood.
When present, the false-Iatewood band was always situated
in either subdivision 3 or 4. In cross-sections 4A and 4B,
false rings in all 3 years were obvious in only one of the two
radi i. The abundance of false rings in the cross-sections from
higher in the trunk is consistent with observations by Fritts
(1976) showing a trend of increasing occurrence of false rings
with height in a ponderosa pine tree from Flagstaff, Arizona,
USA.

The potential value of sampling more than one radius is
underscored in the seasonalol.1C results from the two opposite
radii of cross-section 4C (Fig. 4). For the 1992 ring, the pattems
are very similar and the absolute differences are small « 1%0).
For the 1993 ring, however, the seasonal isotopic shifts are
larger in radius 2, and the absolute differences between radii
are 1-2%0 for most subdivisions. Many studies have found
circumferential variability in the range of 0·5-1·0%0 (Francey,
1981; Leavitt & Long, 1984, 1986; Ramesh ef ai., 1986) or 1
1·5%0 (Sheu et ai., 1996; Stuiver et ai., 1984), with variability
up to 5%0 reported in the extreme (Tans & Mook, 1980). The
mean of the radii at 1·7 m for 1993, however, appears to be
fairly representative as suggested by its similarity to the 1993
patterns from the other 2 cross-sections of tree no. 4 and those
of tree no. 3 (Figs 5 & 6).

The seasonal ol3C patterns at most heights are quite
similar, with some differences in absolute values (Figs 5 & 6).
In tree no. 3, there is the suggestion that higher levels in the
tree (8,2 m) are generally less negative than at I m. In tree no.
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4, however, only the 1992 ring shows increasing ol3C from 1·7
m to 8·7 m to 12·5 m; for the 2 other years the 1·7 m height is
most negative, but the 8.7 m height is least negative. Under
some circumstances, more negative isotopic values have been
found in the foliage of lower branches (Broadmeadow &
Griffiths, 1993; Heaton & Crossley, 1995; Medina & Minchin,
1980; Medina et al., 1991; Schleser & Jayasekera, 1985;
Sternberg et al., 1989) as a consequence of low light level
reducing rates of photosynthesis and the contribution of
isotopically light respired CO

2
mixing with the air below the

canopy. Within tree rings, vertical ol3C variability has been
typically found in the range of 0,5-1,5% (Heaton, 1999; Leavitt
& Long, 1986; Robertson et al., 1995; Schleser, 1992), usually
with ambiguous gradient with height. Integrated photosynthetic
products dominantly from the upper crown would supply most
of the ring development in the trunk, so that gradients are less
likely than for leaves, unless there are some lower branches
with leaves contributing a significant amount of carbon to part
of the associated trunk.

The isotopic patterns for each year are not only consistent
among heights in a tree, but they are also consistent between
trees, although the ol3C values of tree no. 3 are generally more
negati ve than tree no. 4. The 1991 and 1993 rings are
characterized by a seasonal pattern of increasing o13C,
generally to a maximum in subdivision 3 and then a sharp
decline to subdivision 4. Because the false-latewood band is
located in subdivision 4 or late in subdivision 3 of these years,
the increasing ol3C of subdivisions 1-3 would be consistent
with increased moisture stress through spring and early
summer prior to the monsoon onset. The drought relief
following monsoon initiation would then be associated with
the decline in o 13e. The 1992 ring of both trees shows
increasing ol3C generally sustained over all four subdivisions.
This suggests that even after the onset of monsoon-related
precipitation, moisture stress persisted. In a related study,
living pine trees cored at breast height in 1996 from the lower

Rhyolite Canyon in the Chiricahua Mts. (Leavill et al.. 1999)
showed similar patterns: oUC initially increasing to false
latewood and then decreasing for 1991 and 1993, and
increasing throughout the growi ng season for 1992. The
decline at the end of 1993 tended to be larger than in this
slUdy, again suggesting that the 1993 ring is not quite
complete. In the other study, however, 3 unequal subdivisions
were sampled including one after the false-Iatewood band
that contained true latewood and the large-tracheid xylem
immediately after the false ring, one containing the false ring,
and the third prior to the false ring.

The average monthly climate conditions of the 3 study
years (Fig. 7) provide insight into the prevailing
environmental conditions at this site. Although the 1991-92
winter seems to have been somewhat cooler than the following
winter, minimum and maximum temperatures during the 3
growing seasons do not exhibit distinctive differences.
Palmer Drought Severity Index (PDS1) is an integrated
climate index representing water stalUs, with values of zero
indicative of normal moisture conditions. Numbers above
zero are progressively wetter and below zero progressively
drier, with --4 being an "extreme" drought condition. The
moislUre status in 1991 and 1992 is driven largely by winter
conditions, with PDSI decreasing from spring to late fall. In
1993, the declining PDSI is interrupted by a major abrupt
increase in August. At the Chiricahua National Monument
visitor center (near sampling site), it rained ca. 25 cm in
August distributed over 23 of the 31 days, including 13.1 cm
over the last 7 days (with 4.3 cm on the last day). A rainguage
in the upper watershed recorded> 17 mm on the last 2 days
of August alone. The high and sustained August rainfall
probably contributed to the strong uplUrn of PDSI from ca. 
1 to +1.5.

Many of the features of these isotopic patterns are
remarkably consistent with this climatology. The 1991
seasonal tree-ring O'3C pattern records the monsoon onset with
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·22.0 ~i-------------------

Fig. 6-Seasonal ()11C patterns in growth rings of tree no. 4 at 1'7 m, 8'7 m
and 12'5 m heights in trunk.

declining ol3C in subdivision 4, even though the monsoon
moisture is not sufficiently above normal to increase PDSI.
In 1992, the onset of declining spring PDSI was delayed until
June, perhaps displayed in the 1992 first subdivision being
much more negative than that in 1991 or 1993. Additionally,
PDSI declines to lower values at the end of 1992 than either
1991 or 1993, consistent with the continued increase in ol3C
in subdivision 4. Depending on when the trees were killed by
flooding, the ol3C decline in subdivision 4 of the 1993 ring
could represent the influence of the sustained August
precipitation. Had the trees survived, subdivision 4 may likely
have become much more negative than exhibited in our
chronology. Also, the first subdivision in 1993 begins at a
much less negative value than either 1991 or 1992, consistent
with the relatively low spring PDSI values that were already
starting to decline after February.

Because ol3C,;, can also influence o l3C of the tree rings,
the ODC'i' values (Trolier el ai .. 1996) at the closest air
monitoring site (Niwot Ridge, Colorado, 40.05°N, 105.63°W)
were also examined. For 1991-1993, the seasonal Ol3C'i'
fluctuated from ca.

-7.65%0 to -8.10%0, representing a range generally lower
than the 0.5-1.0 %0 seasonal variation seen in Figs 5 and 6.
The most negative values are in March-April and the least
negative values are in August-September. Furthermore, the
other tree rings from Ii ving trees in Chiricahua National
Monument (Leavitt el ai., 1999) show an amplitude of
seasonal variation from 0.5-1.2%0 for 1991-1993, and 0.5
1.5%0 for 1985-1995. The ODC

air
of local CO

2
undoubtedly

contributes to ol3C of tree rings at lower Rhyolite Canyon,
but if Niwot Ridge is representative of the air in southeastern
Arizona then it is probably not a first-order effect in the
seasonal patterns.
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CONCLUSIONS

Seasonal tree-ring ODC patterns generally have the same
shape at different heights, although there are differences in
the absolute value and amplitude. This supports sampling
all trees at a similar height for a seasonal isotope study.

Uncertainties remain about the exact provenance of both
trees. However, the trees show both coherent patterns and
similar variations in absolute values over the 3-years period.

The changing absolute values of ol3C in successive years
and the seasonal patterns within each of the 3 years seem
best explained by records of drought index and rainfall when
supplemented by knowledge of the location of the false ring
within each series of subdivisions.
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The 813C
air

of local CO
2

should contribute to the tree-ring
isotopic composition but the record available from Niwot
Ridge, Colorado, exhibits seasonal variability of ca. 0.4%0
that is about one-half of the average seasonal tree-ring isotope
variability and the shift may not be synchronous.

The seasonal trends contain environmental information,
and given time constraints such as provided by false rings,
the environmental information may be more fully exploited.
An additional contributing factor, yet to be resolved, is the
timing of xylem tracheid expansion versus construction of
the cell wall, i.e., although the initial false-latewood cell

formation may be timed in response to pre-monsoon hyper
arid conditions, the bulk of cell-wall thickening could occur
in subsequent days/weeks. A large lag in these two events
would necessitate development of empirical models based
on environmental data specific to the period of the bulk of
cell-wall formation rather than for the period at which the
cells are initially expanded.
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